Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Evol Biol ; 37(9): 1009-1022, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38989853

RESUMO

Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.


Assuntos
Anfípodes , Interações Hospedeiro-Parasita , Microbiota , Animais , Anfípodes/microbiologia , Anfípodes/parasitologia , Acantocéfalos/genética , Acantocéfalos/fisiologia , Pigmentação/genética , Cor
2.
Environ Sci Technol ; 58(9): 4392-4403, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362876

RESUMO

Unraveling the mysterious pathways of pollutants to the deepest oceanic realms holds critical importance for assessing the integrity of remote marine ecosystems. This study tracks the transport of pollutants into the depths of the oceans, a key step in protecting the sanctity of these least explored ecosystems. By analyzing hadal trench samples from the Mariana, Mussau, and New Britain trenches, we found the widespread distribution of organophosphate ester (OPE) flame retardants but a complex transport pattern for the OPE in these regions. In the Mariana Trench seawater column, OPE concentrations range between 17.4 and 102 ng L-1, with peaks at depths of 500 and 4000 m, which may be linked to Equatorial Undercurrent and topographic Rossby waves, respectively. Sediments, particularly in Mariana (422 ng g-1 dw), showed high OPE affinity, likely due to organic matter serving as a transport medium, influenced by "solvent switching", "solvent depletion", and "filtering processes". Amphipods in the three trenches had consistent OPE levels (29.1-215 ng g-1 lipid weight), independent of the sediment pollution patterns. The OPEs in these amphipods appeared more linked to surface-dwelling organisms, suggesting the influence of "solvent depletion". This study highlights the need for an improved understanding of deep-sea pollutant sources and transport, urging the establishment of protective measures for these remote marine habitats.


Assuntos
Anfípodes , Poluentes Ambientais , Retardadores de Chama , Animais , Ecossistema , Organofosfatos , Ésteres , Solventes
3.
Mol Ecol ; 32(9): 2206-2218, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808786

RESUMO

The examination of genetic structure in the deep-ocean hadal zone has focused on divergence between tectonic trenches to understand how environment and geography may drive species divergence and promote endemism. There has been little attempt to examine localized genetic structure within trenches, partly because of logistical challenges associated with sampling at an appropriate scale, and the large effective population sizes of species that can be sampled adequately may mask underlying genetic structure. Here we examine genetic structure in the superabundant amphipod Hirondellea gigas in the Mariana Trench at depths of 8126-10,545 m. RAD sequencing was used to identify 3182 loci containing 43,408 single nucleotide polymorphisms (SNPs) across individuals after stringent pruning of loci to prevent paralogous multicopy genomic regions being erroneously merged. Principal components analysis of SNP genotypes resolved no genetic structure between sampling locations, consistent with a signature of panmixia. However, discriminant analysis of principal components identified divergence between all sites driven by 301 outlier SNPs in 169 loci and significantly associated with latitude and depth. Functional annotation of loci identified differences between singleton loci used in analysis and paralogous loci pruned from the data set and also between outlier and nonoutlier loci, all consistent with hypotheses explaining the role of transposable elements driving genome dynamics. This study challenges the traditional perspective that highly abundant amphipods within a trench form a single panmictic population. We discuss the findings in relation to eco-evolutionary and ontogenetic processes operating in the deep sea, and highlight key challenges associated with population genetic analysis in nonmodel systems with inherent large effective population sizes and genomes.


Assuntos
Anfípodes , Ecossistema , Animais , Humanos , Anfípodes/genética , Genética Populacional , Densidade Demográfica
4.
Mol Ecol ; 32(18): 5028-5041, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540037

RESUMO

Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.


Assuntos
Anfípodes , Parasitos , Trematódeos , Animais , Anfípodes/genética , Interações Hospedeiro-Parasita/genética , Trematódeos/genética , Fenótipo
5.
Ecotoxicol Environ Saf ; 252: 114602, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773439

RESUMO

Over the last decade, fluctuations of retinoids (RETs), also known as vitamin A and derivatives, have proved to be useful biomarkers to assess the environmental chemical pressure on a wide variety of non-target vertebrates. This use of RET-based biomarkers is of particular interest in the non-target sentinel species Gammarus fossarum in which RETs were shown to influence crucial physiological functions. To study and probe this metabolism in this crustacean model, a UHPLC-MS/MS method was developed to 1) identify and 2) monitor several endogenous RETs in unexposed females throughout their reproductive cycle. Then, females were exposed in controlled conditions to exogenous all-trans retinoic acid (atRA) and citral (CIT), a RA synthesis inhibitor, to simulate an excess or deficiency in RA. Perturbation of vitamin A metabolism by pesticides was further studied in response to methoprene (MET), a juvenile hormone analog as well as glyphosate (GLY). The developed method allowed, for the first time in this model, the identification of RA metabolites (all-trans 4-oxo and 13-cis 4-oxo RA), RA isomers (all-trans and 13-cis RA) as well as retinaldehyde (RALD) isomers (all-trans, 11-cis, and 13-cis RALD) and showed two distinct phases in the reproductive cycle. Retinoic acid successfully increased the tissular concentration of both RA isomers and CIT proved to be efficient at perturbating the conversion from RALD to RA. Methoprene perturbed the ratios between RA isomers whereas GLY had no observed effects on the RET system of G. fossarum females. We were able to discriminate different dynamics of RET perturbations by morphogens (atRA or CIT) or MET which highlights the plausible mediation of RETs in MET-induced disorders. Ultimately, our study shows that RETs are influenced by exposure to MET and strengthen their potential to assess aquatic ecosystem chemical status.


Assuntos
Metoprene , Vitamina A , Animais , Feminino , Ecossistema , Espectrometria de Massas em Tandem , Tretinoína , Retinoides , Isotretinoína , Retinaldeído/metabolismo , Glifosato
6.
Microb Ecol ; 84(2): 627-637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34545412

RESUMO

Amphipods are the dominant scavenging metazoan species in the hadal trenches at water depths below 6,000 m. The gut microbiota have been considered to be contribution to the adaptation of deep-sea organisms; however, few comparative analyses of animal gut microbiota between different isolated hadal environments have been done so far. Here, we employed high-throughput 16S rRNA sequencing to compare the gut microbial taxonomic composition and functional potential diversity of three hadal amphipod species, Hirondellea gigas, Bathycallisoma schellenbergi, and Alicella gigantea, collected from the Mariana Trench, Marceau Trench, and New Britain Trench in the Pacific Ocean, respectively. Results showed that different community compositions were detected across all the amphipod specimens based on the analyses of alpha-diversity, hierarchical cluster tree, and PCoA (principal coordinate analysis). Moreover, almost no correlation was observed between genera overrepresented in different amphipods by microbe-microbe correlations analysis, which suggested that the colonization of symbionts were host-specific. At genus level, Psychromonas was dominant in H. gigas, and Candidatus Hepatoplasma was overall dominant in A. gigantea and B. schellenbergi. Comparison of the functional potential showed that, though three hadal amphipod species shared the same predominant functional pathways, the abundances of those most shared pathways showed distinct differences across all the specimens. These findings pointed to the enrichment of particular functional pathways in the gut microbiota of the different isolated trench amphipods. Moreover, in terms of species relative abundance, alpha-diversity and beta-diversity, there was high similarity of gut microbiota between the two A. gigantea populations, which dwelled in two different localities of the same hadal trench. Altogether, this study provides an initial investigation into the gut-microbial interactions and evolution at the hadal depths within amphipod. Each of these three amphipod species would be a model taxa for future studies investigating the influence habitat difference and geography on gut-microbial communities.


Assuntos
Anfípodes , Microbioma Gastrointestinal , Microbiota , Anfípodes/genética , Animais , Oceano Pacífico , RNA Ribossômico 16S/genética
7.
J Chem Ecol ; 48(4): 416-430, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353298

RESUMO

The consequences of defensive secondary metabolite concentrations and interspecific metabolite diversity on grazers have been extensively investigated. Grazers which prefer certain food sources are often found in high abundance on their host and as a result, understanding the interaction between the two is important to understand community structure. The effects of intraspecific diversity, however, on the grazer are not well understood. Within a single, localized geographic area, the Antarctic red seaweed Plocamium sp. produces 15 quantitatively and qualitatively distinct mixtures of halogenated monoterpenes ("chemogroups"). Plocamium sp. is strongly chemically defended which makes it unpalatable to most grazers, except for the amphipod Paradexamine fissicauda. We investigated differences in the feeding and growth rates of both Plocamium sp. and P. fissicauda, in addition to grazer reproductive output, in relation to different chemogroups. Some chemogroups significantly reduced the grazer's feeding rate compared to other chemogroups and a non-chemically defended control. The growth rate of Plocamium sp. did not differ between chemogroups and the growth rates of P. fissicauda also did not show clear patterns between the feeding treatments. Reproductive output, however, was significantly reduced for amphipods on a diet of algae possessing one of the chemogroups when compared to a non-chemically defended control. Hence, intraspecific chemodiversity benefits the producer since certain chemogroups are consumed at a slower rate and the grazer's reproductive output is reduced. Nevertheless, the benefits outweigh the costs to the grazer as it can still feed on its host and closely associates with the alga for protection from predation.


Assuntos
Plocamium , Animais , Regiões Antárticas , Monoterpenos/química , Plocamium/química , Comportamento Predatório
8.
Dis Aquat Organ ; 148: 167-181, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35445664

RESUMO

The velvet swimming crab Necora puber has been fished in Ireland since the early 1980s and contributes significant income to smaller fishing vessels. From 2016 onwards, reduced landings have been reported. We undertook a full pathological investigation of crabs from fishing grounds at 3 sites on the west (Galway), southwest (Castletownbere) and east (Howth) coasts of Ireland. Histopathology, transmission electron microscopy and molecular taxonomic and phylogenetic analyses showed high prevalence and infection level of Paramarteilia canceri, previously only reported from the edible crab Cancer pagurus. This study provides the first molecular data for P. canceri, and shows its phylogenetic position in the order Paramyxida (Rhizaria). Other parasites and symbionts detected in the crabs were also noted, including widespread but low co-infection with Hematodinium sp. and a microsporidian consistent with the Ameson and Nadelspora genera. This is the first histological record of Hematodinium sp. in velvet crabs from Ireland. Four N. puber individuals across 2 sites were co-infected by P. canceri and Hematodinium sp. At one site, 3 velvet crabs infected with P. canceri were co-infected with the first microsporidian recorded from this host; the microsporidian 18S sequence was almost identical to Ameson pulvis, known to infect European shore crabs Carcinus maenas. The study provides a comprehensive phylogenetic analysis of this and all other available Ameson and Nadelspora 18S sequences. Together, these findings provide a baseline for further investigations of N. puber populations along the coast of Ireland.


Assuntos
Braquiúros , Dinoflagellida , Animais , Irlanda/epidemiologia , Filogenia , Prevalência , Natação
9.
Biochem Genet ; 58(1): 157-170, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31410625

RESUMO

Amphipods of the superfamily Lysianassoidea that inhabit the hadal zone ( > 6000 m) have large bathymetric ranges and play a key role in deep ocean ecosystems. The endemism of these amphipod species makes them a good model for investigating potent natural selection and restricted dispersal in deep ocean trenches. Here, we describe genetic diversity and intraspecific population differentiation among three amphipod species from four Pacific trenches based on a mtDNA concatenated dataset (CO Ι and 16S rRNA genes) from 150 amphipod individuals. All amphipod populations had low genetic diversity, as indicated by haplotype and nucleotide diversity values. Population geographic relationship analysis of two Alicella gigantea populations revealed no genetic differentiation between these two localities (pairwise genetic differentiation coefficient = 0.00032, gene flow = 784.58), and the major variation (99.97%) was derived from variation within the populations. Historical demographic events were investigated using Tajima's D and Fu's F neutrality tests and analysis of mismatch distribution. Consistent results provided strong evidence to support the premise that demographic expansion occurred only for the Mariana population of Hirondellea gigas, possibly within the last 2.1-3.4 million years. These findings suggest that the formation of amphipod population structure might be the result of multiple factors including high hydrostatic pressure, food distribution, trench topographic forcing and potential ecological interactions.


Assuntos
Anfípodes/classificação , Anfípodes/genética , DNA Mitocondrial/genética , Variação Genética/genética , RNA Ribossômico 16S/genética , Animais , Ecossistema , Fluxo Gênico , Oceano Pacífico , População/genética
10.
Bull Environ Contam Toxicol ; 105(3): 345-350, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642796

RESUMO

Whether and to which extent the effects of chemicals in the environment interact with other factors remains a scientific challenge. Here we assess the combined effects of temperature (16 vs. 20°C), light conditions (darkness vs. 400 lx), dissolved organic matter (DOM; 0 vs. 6 mg/L) and the model insecticide thiacloprid (0 vs. 3 µg/L) in a full-factorial experiment on molting and leaf consumption of Gammarus fossarum. Thiacloprid was the only factor significantly affecting gammarids' molting. While DOM had low effects on leaf consumption, temperature, light and thiacloprid significantly affected this response variable. The various interactions among these factors were not significant suggesting additivity. Only the interaction of the factors temperature and thiacloprid suggested a tendency for antagonism. As most stressors interacted additively, their joint effects may be predictable with available models. However, synergistic interactions are difficult to capture while being central for securing ecosystem integrity.


Assuntos
Anfípodes/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Ecossistema , Folhas de Planta/efeitos dos fármacos , Temperatura , Tiazinas
11.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366990

RESUMO

Hadal environments sustain diverse microorganisms. A few studies have investigated hadal microbial communities consisting of free-living or particle-associated bacteria and archaea. However, animal-associated microbial communities in hadal environments remain largely unexplored, and comparative analyses of animal gut microbiota between two isolated hadal environments have never been done so far. In the present study, 228 Gb of gut metagenomes of the giant amphipod Hirondellea gigas from two hadal trenches, the Mariana Trench and Japan Trench, were sequenced and analyzed. Taxonomic analysis identified 49 microbial genera commonly shared by the gut microbiota of the two H. gigas populations. However, the results of statistical analysis, in congruency with the alpha and beta diversity analyses, revealed significant differences in gut microbial composition across the two trenches. Abundance variation of Psychromonas, Propionibacterium, and Pseudoalteromonas species was observed. Microbial cooccurrence was demonstrated for microbes that were overrepresented in the Mariana trench. Comparison of functional potential showed that the percentage of carbohydrate metabolic genes among the total microbial genes was significantly higher in the guts of H. gigas specimens from the Mariana Trench. Integrating carbon input information and geological characters of the two hadal trenches, we propose that the differences in the community structure might be due to several selective factors, such as environmental variations and microbial interactions.IMPORTANCE The taxonomic composition and functional potential of animal gut microbiota in deep-sea environments remain largely unknown. Here, by performing comparative metagenomics, we suggest that the gut microbial compositions of two Hirondellea gigas populations from the Mariana Trench and the Japan Trench have undergone significant divergence. Through analyses of functional potentials and microbe-microbe correlations, our findings shed light on the contributions of animal gut microbiota to host adaptation to hadal environments.


Assuntos
Anfípodes/microbiologia , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal/fisiologia , Animais , Archaea/classificação , Bactérias/classificação , Fontes Hidrotermais
12.
Environ Monit Assess ; 192(1): 68, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31879823

RESUMO

Quadrivisio bengalensis (Stebbing Records of Indian Museum, 1, 159-161, 1907), a eurythermal (26.5-32.2 °C) and euryhaline (0.10-26.2 psu) tropical species, makes a profound contribution as a fodder organism to the benthic biomass of tropical backwaters. Studies on life span, variations in broods, fecundity, sex ratio, brooding behaviour, brood stock assessment, growth rate, antennal segments as an index of growth, moulting frequency, mortality and starvation resistance of Q. bengalensis were made for the first time under controlled laboratory conditions of 12-h photo period for 252 days on 8 pairs of specimens (male and female) collected from the field and their successive broods. The life span of females was found to be higher (maximum 220 days) than males (maximum 175 days). Number of broods varied between 5 and 15, depending on the "status of the brood" (early or late). The maximum number of juveniles in a single brood was 24 and that by a single female over the entire life span was 211. The incubation time varied between 6 and 9 days and the duration of moults (8-18 days) was found to increase with the age of the animals. Maximum growth is usually attained by the offspring arising from the 5th to 7th broods. The 4th to 7th broods were the optimal broods for the maximum number of females attaining maturity. For broods 3 to 7 of the parental set, probability of extinction (ξ) calculated on applying stochastic branching process to generation studies for the first time showed an increasing trend with number of broods while a decreasing trend for ξ for 8th and 9th broods, with least ξ for broods 5 to 7 of the 5th, 6th and 7th generations, suggesting life span and fecundity rates as functions of the "brood status" (early or late). Whether it is true with higher crustaceans remains to be explored.


Assuntos
Anfípodes/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Estuários , Fertilidade/fisiologia , Longevidade , Anfípodes/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Sedimentos Geológicos , Índia , Masculino
13.
Proc Biol Sci ; 285(1876)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643215

RESUMO

Abiotic conditions have long been considered essential in structuring freshwater macroinvertebrate communities. Ecological drift, dispersal and biotic interactions also structure communities, and although these mechanisms are more difficult to detect, they may be of equal importance in natural communities. Here, we hypothesized that in 10 naturally replicated headwater streams in eastern Switzerland, locally dominant amphipod species would be associated with differences in environmental conditions. We conducted repeated surveys of amphipods and used a hierarchical joint species distribution model to assess the influence of different drivers on species co-occurrences. The species had unique environmental requirements, but a distinct spatial structure in their distributions was unrelated to habitat. Species co-occurred much less frequently than predicted by the model, which was surprising because laboratory and field evidence suggests they are capable of coexisting in equal densities. We suggest that niche preemption may limit their distribution and that a blocking effect related to the specific linear configuration of streams determines which species colonizes and dominates a given stream catchment, thus suggesting a new solution a long-standing conundrum in freshwater ecology.


Assuntos
Anfípodes/fisiologia , Distribuição Animal , Ecossistema , Rios , Animais , Água Doce , Suíça
14.
Glob Chang Biol ; 24(9): 4340-4356, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29768693

RESUMO

Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in the presence of parasites induced massive structural changes: amphipod abundances decreased species-specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, four degree higher temperatures in the absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19-25°C) and parasitism, simulating a prolonged heat-wave scenario, resulted in an almost complete parasite-induced extermination of the amphipod community at 25°C. In addition, at 19°C, just two degrees above the present average, a similar temperature-parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat-wave temperature of 25°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate in terms of abundance and diversity in face of anticipated global warming, functionally changing them to be dominated by infaunal species.


Assuntos
Anfípodes/parasitologia , Aquecimento Global , Interações Hospedeiro-Parasita , Temperatura Alta , Caramujos/parasitologia , Trematódeos/fisiologia , Animais , Especificidade da Espécie
15.
Biosci Biotechnol Biochem ; 82(7): 1123-1133, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29623763

RESUMO

Hirondellea species are common inhabitants in the hadal region deeper than 7,000 m. We found that Hirondellea gigas thrived in the Challenger Deep possessed polysaccharide hydrolases as digestive enzymes. To obtain various enzymes of other H. gigas, we captured amphipods from the Japan Trench, and Izu-Ogasawara (Bonin) Trench. A phylogenetic analysis based on the cytochrome oxidase I gene showed close relationships among amphipods, despite the geographic distance between the localities. However, several differences in enzymatic properties were observed in these H. gigas specimens. We also carried out RNA sequencing of H. gigas from the Izu-Ogasawara Trench. The cellulase gene of H. gigas was highly homologous to cellobiohydrolase of Glucosyl Hydrolase family 7 (GH7). On the other hand, enzymatic properties of H. gigas's cellulase were different from those of typical GH7 cellobiohydrolase. Thus, these results indicate that hadal-zone amphipod can be good candidates as the new enzyme resource.


Assuntos
Anfípodes/enzimologia , Hidrolases/metabolismo , Polissacarídeos/metabolismo , Anfípodes/classificação , Anfípodes/genética , Animais , Organismos Aquáticos , Celulase/genética , Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Cinética , Mutação , Filogenia , Água do Mar , Análise de Sequência de RNA , Especificidade por Substrato
16.
Ecotoxicol Environ Saf ; 158: 9-17, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29656166

RESUMO

In amphipods, growth, development and reproduction are mediated by the molt, which is a hormonally controlled process and which, therefore, could be impacted by endocrine disruption compounds (EDC). The molt process is controlled by both X-organ (XO) and Y-organ (YO) through a variety of hormones and receptors including the molt-inhibiting hormone (MIH) and the ecdysteroid receptor (EcR). However, although many studies were devoted to characterize MIH and EcR in crustaceans, only few works evaluated their variations under EDCs exposures. Consequently, the present work aimed to characterize MIH and EcR genes of the amphipod Gammarus pulex, as well as to study their relative expression variations after exposure to four EDCs, proved in vertebrates: ethinylestradiol (estrogen), 4-hydroxytamoxifen (anti-estrogen), 17α-methyltestosterone (androgen) and cyproterone acetate (anti-androgen). PCR amplification allowed to obtain 204 bp length and 255 bp length fragments, encoding for partial sequences of 68 amino acids and 85 amino acids, which correspond to EcR and MIH, respectively, and which are highly conserved in crustacean species. Results highlighted MIH and EcR expressions mainly in G. pulex head, which is the localization of XO and YO. Moreover, irrespective of the EDC exposure, increases of MIH and EcR relative expressions were observed, as it was observed after the exposure to 20-hydroxyecdysone (20HE), the natural molt hormone, used as positive control. Therefore, it appeared that tested EDCs behaved like 20HE, suggesting that their effects could occur through the ecdysteroids pathways, and so impact the molt process of G. pulex on the long term. Finally, the present study is a first step in the possibility of using MIH and EcR relative expressions as biomarkers of exposure for EDCs risk assessment. However additional studies must first be carried out to better characterize and understand their variations, and also better predicted consequences for the exposed amphipods.


Assuntos
Braquiúros/metabolismo , Ecdisteroides/metabolismo , Disruptores Endócrinos/farmacologia , Exposição Ambiental/análise , Hormônios de Invertebrado/metabolismo , Muda/efeitos dos fármacos , Receptores de Esteroides/metabolismo , Sequência de Aminoácidos , Androgênios/farmacologia , Animais , Braquiúros/efeitos dos fármacos , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Acetato de Ciproterona/farmacologia , DNA Complementar/metabolismo , Biomarcadores Ambientais , Monitoramento Ambiental , Antagonistas de Estrogênios/farmacologia , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Hormônios de Invertebrado/genética , Estágios do Ciclo de Vida/efeitos dos fármacos , Metiltestosterona/farmacologia , Reação em Cadeia da Polimerase , Receptores de Esteroides/genética , Medição de Risco , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
17.
Ecotoxicology ; 27(7): 845-859, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29464532

RESUMO

Global climate change (GCC) is likely to intensify the synergistic effects between altered physicochemical parameters [of changing habitats] and other anthropogenic threats, such as water pollution, posing increased risks to aquatic biodiversity. As such, it is critical to understand how organisms will respond to changes in water temperature and salinity in the presence of contaminants. We exposed the epibenthic amphipod Hyalella azteca to a 3 × 3 factorial treatment design of three temperatures and three salinities ranging from 12 to 18 °C and 0 to 8 parts per thousand (ppt), respectively, in combination with a low-level environmentally relevant concentration of the pyrethroid insecticide bifenthrin (1 ng/L). Effects on survival and swimming behavior were evaluated after 96 h exposure. Transcription of a select suite of genes was monitored at 24, 48, and 96 h using quantitative polymerase chain reaction (qPCR). Our results not only demonstrate that the changes in salinity and temperature result in negative effects to invertebrate survival, behavior, and gene response, but that the effects were significantly more pronounced in the presence of bifenthrin. This is particularly important since greater thermal fluctuations, changes in timing and extent of glacial melt, and changes in precipitation, could result in H. azteca experiencing lower temperatures at times that coincide with increased spraying of pyrethroids. These environmentally relevant exposures using the standard test species H. azteca provide essential information for understanding effects caused by GCC in conjunction with increasing pesticide use, further highlighting the need to incorporate GCC impacts into risk assessments of contaminants of concern.


Assuntos
Anfípodes/efeitos dos fármacos , Inseticidas/toxicidade , Piretrinas/toxicidade , Salinidade , Temperatura , Animais , California , Mudança Climática , Relação Dose-Resposta a Droga , Movimento/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
18.
Ecotoxicology ; 27(9): 1249-1260, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191520

RESUMO

Pesticides can easily reach surface waters via runoff and their potential to have detrimental impacts on freshwater organisms is high. Not much is known about how macroinvertebrates react to glyphosate contamination. In this study we investigated lethal and sublethal effects of the exposure of Gammarus fossarum to Roundup®, a glyphosate-based herbicide. The LC10 and LC50 values after 96 h were determined to be 0.65 ml/L Roundup® (230 mg/L glyphosate) and 0.96 ml/L Roundup® (340 mg/L glyphosate), respectively. As a sublethal measure of toxicity we conducted eight experiments with the feeding activity and the respiratory electron transport system (ETS) activity as endpoints. All experiments lasted seven days. Although the LC10 concentration of Roundup® was used for the feeding activity tests, 49% of the gammarids died before the end of the experiments, which is inconsistent with the calculated LC10-values. The feeding activity was significantly higher in Roundup®-enriched water (mean = 0.18 mg/mg x d) in comparison to pure spring water (mean = 0.079 mg/mg x d). No significant difference was observed between the ETS activity, which was determined after 24, 48 or 96 h after the start of the experiment, of the gammarids in Roundup® solution and in the control. The LC-values determined here are rather high, and exceed background glyphosate concentrations in most anthropogenically influenced surface waters. The increased feeding activity when exposed to Roundup® in combination with an unchanged ETS activity suggests effects on the metabolic efficiency of G. fossarum. We argue that Roundup® enhances the anabolic activity (feeding activity) in order to maintain the catabolic activity (ETS activity).


Assuntos
Anfípodes/fisiologia , Glicina/análogos & derivados , Herbicidas/toxicidade , Metabolismo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Glicina/toxicidade , Testes de Toxicidade , Glifosato
19.
J Environ Sci (China) ; 68: 41-54, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29908743

RESUMO

Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ34S), carbon (δ13C), and nitrogen (δ15N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ13C and δ34S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient.


Assuntos
Organismos Aquáticos/metabolismo , Monitoramento Ambiental , Estuários , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biota , Canadá , Peixes/metabolismo , Cadeia Alimentar , Invertebrados/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Rios , Salinidade , Poluentes Químicos da Água/análise
20.
J Eukaryot Microbiol ; 64(1): 56-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288198

RESUMO

A novel species of aseptate eugregarine, Ganymedes yurii sp. n., is described using microscopic and molecular approaches. It inhabits the intestine of Gondogeneia sp., a benthic amphipod found along the shore of James Ross Island, Weddell Sea, Antarctica. The prevalence of the infection was very low and only a few caudo-frontal syzygies were found. Morphologically, the new species is close to a previously described amphipod gregarine, Ganymedes themistos, albeit with several dissimilarities in the structure of the contact zone between syzygy partners, as well as other characteristics. Phylogenetic analysis of the 18S rDNA from G. yurii supported a close relationship between these species. These two species were grouped with other gregarines isolated from crustaceans hosts (Cephaloidophoroidea); however, statistical support throughout the clade of Cephaloidophoroidea gregarines was minimal using the available dataset.


Assuntos
Anfípodes/parasitologia , Apicomplexa/ultraestrutura , Animais , Regiões Antárticas , Apicomplexa/classificação , Apicomplexa/genética , Sequência de Bases , DNA de Protozoário/genética , DNA Ribossômico/genética , Microscopia , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa