Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.921
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(23): 4361-4375.e19, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368306

RESUMO

Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of µ-opioid receptor (µOR). Here, we report structures of the human µOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of µOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of µOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of µOR, which may facilitate rational design of next-generation analgesics.


Assuntos
Fentanila , Morfina , Humanos , Analgésicos Opioides/farmacologia , Arrestina/metabolismo , Fentanila/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Morfina/farmacologia , Receptores Opioides mu
2.
Annu Rev Biochem ; 90: 739-761, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756098

RESUMO

Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the µ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.


Assuntos
Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Receptores Opioides/química , Receptores Opioides/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Animais , Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(31): e2204114119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878019

RESUMO

The lack of effective and safe analgesics for chronic pain management has been a health problem associated with people's livelihoods for many years. Analgesic peptides have recently shown significant therapeutic potential, as they are devoid of opioid-related adverse effects. Programmed cell death protein 1 (PD-1) is widely expressed in neurons. Activation of PD-1 by PD-L1 modulates neuronal excitability and evokes significant analgesic effects, making it a promising target for pain treatment. However, the research and development of small molecule analgesic peptides targeting PD-1 have not been reported. Here, we screened the peptide H-20 using high-throughput screening. The in vitro data demonstrated that H-20 binds to PD-1 with micromolar affinity, evokes Src homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) phosphorylation, and diminishes nociceptive signals in dorsal root ganglion (DRG) neurons. Preemptive treatment with H-20 effectively attenuates perceived pain in naïve WT mice. Spinal H-20 administration displayed effective and longer-lasting analgesia in multiple preclinical pain models with a reduction in or absence of tolerance, abuse liability, constipation, itch, and motor coordination impairment. In summary, our findings reveal that H-20 is a promising candidate drug that ameliorates chronic pain in the clinic.


Assuntos
Analgésicos , Dor Crônica , Peptídeos , Receptor de Morte Celular Programada 1 , Analgésicos/farmacologia , Analgésicos Opioides , Animais , Dor Crônica/tratamento farmacológico , Gânglios Espinais/metabolismo , Camundongos , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/metabolismo
4.
J Neurosci ; 43(43): 7073-7083, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648450

RESUMO

Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.


Assuntos
Canal de Potássio KCNQ2 , Agonistas Muscarínicos , Masculino , Feminino , Camundongos , Ratos , Animais , Sulfato de Desidroepiandrosterona , Canal de Potássio KCNQ2/metabolismo , Agonistas Muscarínicos/farmacologia , Dor/tratamento farmacológico , Formaldeído , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo
5.
J Cell Mol Med ; 28(6): e18131, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426931

RESUMO

Postherpetic neuralgia (PHN) is a notorious neuropathic pain featuring persistent profound mechanical hyperalgesia with significant negative impact on patients' life quality. CDDO can regulate inflammatory response and programmed cell death. Its derivative also protects neurons from damages by modulating microglia activities. As a consequence of central and peripheral sensitization, applying neural blocks may benefit to minimize the risk of PHN. This study aimed to explore whether CDDO could generate analgesic action in a PHN-rats' model. The behavioural test was determined by calibrated forceps testing. The number of apoptotic neurons and degree of glial cell reaction were assessed by immunofluorescence assay. Activation of PKC-δ and the phosphorylation of Akt were measured by western blots. CDDO improved PHN by decreasing TRPV1-positive nociceptive neurons, the apoptotic neurons, and reversed glial cell reaction in adult rats. It also suppressed the enhanced PKC-δ and p-Akt signalling in the sciatic nerve, dorsal root ganglia (DRG) and spinal dorsal horn. Our research is the promising report demonstrating the analgesic and neuroprotective action of CDDO in a PHN-rat's model by regulating central and peripheral sensitization targeting TRPV1, PKC-δ and p-Akt. It also is the first study to elucidate the role of oligodendrocyte in PHN.


Assuntos
Neuralgia Pós-Herpética , Neuralgia , Ácido Oleanólico/análogos & derivados , Humanos , Adulto , Ratos , Animais , Neuralgia Pós-Herpética/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuralgia/metabolismo , Analgésicos , Gânglios Espinais/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Mol Pain ; 20: 17448069241275099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093638

RESUMO

Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.


Assuntos
Analgésicos , Toxinas Botulínicas , Dor , Animais , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas/uso terapêutico
7.
Biochem Biophys Res Commun ; 697: 149547, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38245926

RESUMO

A new series of thiophenpiperazine amide derivatives as potent dual ligands for the µ-opioid (MOR) and sigma-1 (σ1R) receptors are reported. Compound 23 exhibited good affinity to σ1R (Ki = 44.7 ± 7.05 nM) and high selectivity to σ2R. Furthermore, Compound 23 exerted MOR agonism and σ1R antagonism and potent analgesic activity in animal moldes (the abdominal constriction test (ED50 = 3.83 mg/kg) and carrageenan-induced inflammatory hyperalgesia model (ED50 = 5.23 mg/kg)). We obtained new dual ligands that might serve as starting points for preparing targeted tools. Furthermore, 23 may be a useful chemical probe for understanding more fully analgesic effects associated with MOR agonism and σ1R antagonism.


Assuntos
Amidas , Receptores sigma , Animais , Amidas/farmacologia , Amidas/uso terapêutico , Dor/induzido quimicamente , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Ligantes , Receptores Opioides mu
8.
Chembiochem ; 25(9): e202300837, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477021

RESUMO

Dipeptides of a new structure based on ß-triazolalanines and (L)-α-amino acids were synthesized and optimal conditions were developed that ensure both chemical and optical purity of the final products. Molecular docking was carried out and possible intermolecular interactions of dipeptides with potential targets were established. Based on these studies, the analgesic property of chosen dipeptides was studied and it was found that some compounds possess revealed antinociceptive activity in the tail-flick test.


Assuntos
Analgésicos , Dipeptídeos , Simulação de Acoplamento Molecular , Triazóis , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Animais , Camundongos , Masculino
9.
J Gen Intern Med ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095571

RESUMO

BACKGROUND: High prevalence of depression or anxiety with opioid use for chronic pain complicates co-management and may influence prescribing behaviors. OBJECTIVE: Compare clinical effectiveness of electronic medical record clinical decision support (EMR-CDS) versus additional behavioral health (BH) care management for reducing rates of high-dose opioid prescriptions. DESIGN: Type 2 effectiveness-implementation hybrid stepped-wedge cluster randomized trial in 35 primary care clinics within a health system in LA, USA. PARTICIPANTS: Patients aged 18+ receiving chronic opioid therapy for non-cancer pain with depression or anxiety and matched controls. INTERVENTION: EMR-CDS included opioid risk mitigation procedures. BH care included cognitive behavioral therapy; depression or anxiety medication adjustments; and case management. MAIN MEASURES: Outcomes of interest included difference-in-difference (DID) estimate of changes in probability for prescribing high-dose morphine equivalent daily dose (MEDD ≥50 mg/day and MEDD ≥90), average MEDD, and rates of hospitalization, emergency department use, and opioid risk mitigation. KEY RESULTS: Most participants were female with 3+ pain syndromes. Data analysis included 632 patients. Absolute risk differences for MEDD≥50 and ≥90 decreased post-index compared to pre-index (DID of absolute risk difference [95%CI]: -0.036 [-0.089, 0.016] and -0.029 [-0.060, 0.002], respectively). However, these differences were not statistically significant. The average MEDD decreased at a higher rate for the BH group compared to EMR-CDS only (DID rate ratio [95%CI]: 0.85 [0.77, 0.93]). There were no changes in hospitalization and emergency department utilization. The BH group had higher probabilities of new specialty referrals and prescriptions for naloxone and antidepressants. CONCLUSIONS: Incorporation of a multidisciplinary behavioral health care team into primary care did not decrease high-dose prescribing; however, it improved adherence to clinical guideline recommendations for managing chronic opioid therapy for non-cancer pain. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT03889418.

10.
Anal Biochem ; 692: 115579, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797485

RESUMO

Synthetic opioids like Tramadol are used to treat mild to moderate pain. Its ability to relieve pain is about a tenth that of morphine. Furthermore, Tramadol shares similar effects on serotonin and norepinephrine to several antidepressants known as serotonin-norepinephrine reuptake inhibitors (SNRIs), such as venlafaxine and duloxetine. The present review paper discusses the recent developments in analytical methods for identifying drugs in pharmaceutical preparations and toxicological materials, such as blood, saliva, urine, and hair. In recent years, a wide variety of analytical instruments, including capillary electrophoresis, NMR, UV-visible spectroscopy, HPTLC, HPLC, LC-MS, GC, GC-MS, and electrochemical sensors, have been used for drug identification in pharmaceutical preparations and toxicological samples. The primary quantification techniques currently employed for its quantification in various matrices are highlighted in this research.


Assuntos
Analgésicos Opioides , Tramadol , Tramadol/análise , Tramadol/urina , Analgésicos Opioides/análise , Analgésicos Opioides/urina , Humanos
11.
Pharmacol Res ; : 107408, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307212

RESUMO

Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.

12.
J Surg Res ; 302: 814-824, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241290

RESUMO

INTRODUCTION: Diabetes mellitus (DM) is a prevalent metabolic disorder associated with various postoperative complications. The association between DM and postoperative opioid use remains unclear, with conflicting evidence in the literature. This systematic review and meta-analysis comprehensively evaluated the association between DM and postoperative opioid consumption, pain sensation, and adverse effects in surgical patients. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search of electronic databases identified studies investigating the relationship between DM and postoperative pain outcomes. Eligible studies, both prospective and retrospective, were included based on the predefined criteria. Data extraction and quality assessment were performed independently by the authors. Meta-analyses were performed using Review Manager 5. RESULTS: Among 100 initially identified articles, five studies met the inclusion criteria. In the meta-analysis, 473 participants were included. The results indicated that patients with DM had significantly higher postoperative opioid consumption (standardized mean difference, 0.79; 95% confidence interval, 0.26-1.31; P = 0.003) than those in the control group, with substantial heterogeneity (I2 = 83%). No significant differences in postoperative pain scale scores at rest or during movement were observed. Adverse effects, including nausea, vomiting, and pruritus, showed varied outcomes, whereas overall satisfaction did not differ between the two groups. CONCLUSIONS: This meta-analysis provides evidence that patients with DM undergoing surgery consume more opioids postoperatively. Understanding the association between DM and pain management is crucial for optimizing perioperative care in this patient population.

13.
Bioorg Med Chem Lett ; 101: 129656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355061

RESUMO

To discover mode-selective TRPV1 antagonists as thermoneutral drug candidates, the previous potent antagonist benzopyridone 2 was optimized based on the pharmacophore A- and C-regions. The structure activity relationship was investigated systematically by modifying the A-region by incorporating a polar side chain on the pyridone and then by changing the C-region with a variety of substituted pyridine and pyrazole moieties. The 3-t-butyl and 3-(1-methylcyclopropyl) pyrazole C-region analogs provided high potency as well as mode-selectivity. Among them, 51 and 54 displayed potent and capsaicin-selective antagonism with IC50 = 2.85 and 3.27 nM to capsaicin activation and 28.5 and 31.5 % inhibition at 3 µM concentration toward proton activation, respectively. The molecular modeling study of 51 with our homology model indicated that the hydroxyethyl side chain in the A-region interacted with Arg557 and Glu570, the urea B-region engaged in hydrogen bonding with Tyr511 and Thr550, respectively, and the pyrazole C-region made two hydrophobic interactions with the receptor. Optimization of antagonist 2, which has full antagonism for activators of all modes, lead to mode-selective antagonists 51 and 54. These observations will provide insight into the future development of clinical TRPV1 antagonists without target-based side effects.


Assuntos
Capsaicina , Ureia , Ureia/química , Capsaicina/farmacologia , Relação Estrutura-Atividade , Modelos Moleculares , Pirazóis/farmacologia , Canais de Cátion TRPV
14.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588785

RESUMO

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Assuntos
Benzoxazinas , Canais de Cátion TRPV , Ureia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Relação Estrutura-Atividade , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Ureia/síntese química , Humanos , Estrutura Molecular , Animais , Capsaicina/farmacologia , Capsaicina/química , Descoberta de Drogas , Relação Dose-Resposta a Droga
15.
Periodontol 2000 ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923566

RESUMO

The survival of an organism relies on its ability to repair the damage caused by trauma, toxic agents, and inflammation. This process involving cell proliferation and differentiation is driven by several growth factors and is critically dependent on the organization of the extracellular matrix. Since autologous platelet concentrates (APCs) are fibrin matrices in which cells, growth factors, and cytokines are trapped and delivered over time, they are able to influence that response at different levels. The present review thoroughly describes the molecular components present in one of these APCs, leukocyte- and platelet-rich fibrin (L-PRF), and summarizes the level of evidence regarding the influence of L-PRF on anti-inflammatory reactions, analgesia, hemostasis, antimicrobial capacity, and its biological mechanisms on bone/soft tissue regeneration.

16.
Bioorg Med Chem ; 107: 117750, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776567

RESUMO

Analgesia and blood sugar control are considered as two main unmet clinical needs for diabetes related neuropathic pain patients. Transient receptor potential vanilloid type-1 (TRPV1) channel is a highly validated target for pain perception, while no TRPV1 antagonists have been approved due to hyperthermia side effects. Herein, two series of new TRPV1 antagonists with flavonoid skeleton were designed by the structure-based drug design (SBDD) strategy. After comprehensive evaluation, compound CX-3 was identified as a promising TRPV1 antagonist. CX-3 exhibited equivalent TRPV1 antagonistic activity with classical TRPV1 antagonist BCTC in vitro, and exerted better analgesic activity in vivo than that of BCTC in the formalin induced inflammatory pain model without hyperthermia risk. Moreover, CX-3 exhibited robust glucose-lowering effects and showed high selectivity over other ion channels. Overall, these findings identified a first-in-class highly selective TRPV1 antagonist CX-3, which is a promising candidate to target the pathogenesis of diabetes related neuropathic pain.


Assuntos
Analgésicos , Hipoglicemiantes , Canais de Cátion TRPV , Animais , Humanos , Masculino , Camundongos , Ratos , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
17.
J Am Acad Dermatol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309304

RESUMO

Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a non-invasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and non-dermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (e.g., insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration and differentiation. Effective PBM therapy is dependent on treatment parameters (e.g., fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.

18.
Ann Pharmacother ; 58(3): 205-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37278013

RESUMO

BACKGROUND: The most prevalent entrapment neuropathy is carpal tunnel syndrome (CTS). Although nonsteroidal antiinflammatory drugs (NSAIDs) are frequently prescribed for musculoskeletal disorders, oral NSAIDs do not provide any additional benefits for CTS. Nevertheless, the use of NSAID phonophoresis has shown significant improvement, possibly due to increased concentration in the target tissue. The effects of intracarpal injection of NSAIDs on CTS have not been studied. OBJECTIVE: We conducted a controlled trial to compare the efficacy of ketorolac and triamcinolone in treating CTS. METHODS: Mild to moderate CTS patients were randomly assigned to receive either a local injection of 30 mg ketorolac or 40 mg triamcinolone. Patients were evaluated using visual analog scale (VAS) for pain, severity, function, electrodiagnostic findings, patient satisfaction, and any complications at the injection site, at baseline and 12 weeks after the procedures. RESULTS: Fifty patients participated, and 43 completed the study. Both groups showed significant improvement in the VAS, severity, function, and electrodiagnostic scores at 3 months compared with the baseline. A comparison of the groups showed significant differences in VAS, severity, and function, with the improvement being significantly higher in the triamcinolone group. CONCLUSION AND RELEVANCE: The present study showed that injection of triamcinolone or ketorolac into the carpal tunnel relieved pain, increased function, and improved electrodiagnostic findings in patients with mild to moderate CTS. It also showed that triamcinolone was superior to ketorolac in terms of analgesic effect and resulted in greater improvement in symptom severity and function.


Assuntos
Síndrome do Túnel Carpal , Triancinolona , Humanos , Triancinolona/efeitos adversos , Cetorolaco/efeitos adversos , Síndrome do Túnel Carpal/tratamento farmacológico , Anti-Inflamatórios não Esteroides/efeitos adversos , Dor/tratamento farmacológico , Resultado do Tratamento
19.
Bioorg Chem ; 153: 107805, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39255608

RESUMO

A series of 3-(2-trifluoromethyl-3-aryl-4H-chromen-4-yl)-1H-indoles (5-1 to 5-29) were developed and characterized. Most of compounds were found to be potent for inhibiting the production of NO in LPS-induced RAW264.7 cells, of which 3-(3-(4-chlorophenyl)-6-methoxy-2-(trifluoromethyl)-4H-chromen-4-yl)-1H-indole (5-25) was the most optimal (IC50 = 4.82 ± 0.34 µΜ) and was capable of significantly suppressing the release of PGE2. The inhibitory effect of 5-25 on human recombinant COX-2 (IC50 = 51.7 ± 1.3 nM) was measured and molecular docking was performed, determining 5-25 as a COX-2 inhibitor. Additionally, the interaction between 5-25 and COX-2 was determined by the CETSA technique. Then, 5-25 inhibited the degradation of IκB, the phosphorylation and nuclear translocation of NF-κB p65, and the expression of COX-2 and iNOS. Moreover, it was verified that 5-25 exhibited efficacy in rodent models of inflammation and pain, encompassing the paw edema, cotton pellet-induced granuloma, acid-induced writhing, and adjuvant-induced arthritis models. Therefore, the mechanism of 5-25 may be to bind to COX-2 and exert anti-inflammatory and analgesic effects in vitro and in vivo by suppressing the NF-κB pathway. Encouragingly, in comparison with indomethacin, 5-25 exhibited a lower ulcerative potential in rats, as manifested by generating smaller areas and fewer ulcers, less inflammatory infiltration, a lower expression of MMP-9, and less apoptosis. In conclusion, 5-25 is a candidate drug with high activity and low ulcerogenic potential, and it deserves further research for the treatment of inflammation, pain, and other symptoms in which COX-2 plays a role in their pathogenesis.

20.
Bioorg Chem ; 147: 107372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653152

RESUMO

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Assuntos
Analgésicos , Anti-Inflamatórios não Esteroides , Ciclo-Oxigenase 2 , Edema , Simulação de Acoplamento Molecular , Tiazóis , Animais , Masculino , Camundongos , Ratos , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Edema/tratamento farmacológico , Edema/induzido quimicamente , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa