RESUMO
Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.
Assuntos
Imunidade Inata , Vírus da Influenza A , Animais , Aves , Genômica , Sistema Imunitário , Imunidade Inata/genética , Vírus da Influenza A/genéticaRESUMO
Wide variation in visual field configuration across avian species is hypothesized to be driven primarily by foraging ecology and predator detection. While some studies of selected taxa have identified relationships between foraging ecology and binocular field characteristics in particular species, few have accounted for the relevance of shared ancestry. We conducted a large-scale, comparative analysis across 39 Anatidae species to investigate the relationship between the foraging ecology traits of diet or behaviour and binocular field parameters, while controlling for phylogeny. We used phylogenetic models to examine correlations between traits and binocular field characteristics, using unidimensional and morphometric approaches. We found that foraging behaviour influenced three parameters of binocular field size: maximum binocular field width, vertical binocular field extent, and angular separation between the eye-bill projection and the direction of maximum binocular field width. Foraging behaviour and body mass each influenced two descriptors of binocular field shape. Phylogenetic relatedness had minimal influence on binocular field size and shape, apart from vertical binocular field extent. Binocular field differences are associated with specific foraging behaviours, as related to the perceptual challenges of obtaining different food items from aquatic and terrestrial environments.
Assuntos
Anseriformes , Patos , Animais , Gansos , Visão Binocular , FilogeniaRESUMO
The processes leading to divergence and speciation can differ broadly among taxa with different life histories. We examine these processes in a small clade of ducks with historically uncertain relationships and species limits. The green-winged teal (Anas crecca) complex is a Holarctic species of dabbling duck currently categorized as three subspecies (Anas crecca crecca, A. c. nimia, and A. c. carolinensis) with a close relative, the yellow-billed teal (Anas flavirostris) from South America. A. c. crecca and A. c. carolinensis are seasonal migrants, while the other taxa are sedentary. We examined divergence and speciation patterns in this group, determining their phylogenetic relationships and the presence and levels of gene flow among lineages using both mitochondrial and genome-wide nuclear DNA obtained from 1,393 ultraconserved element (UCE) loci. Phylogenetic relationships using nuclear DNA among these taxa showed A. c. crecca, A. c. nimia, and A. c. carolinensis clustering together to form one polytomous clade, with A. flavirostris sister to this clade. This relationship can be summarized as (crecca, nimia, carolinensis)(flavirostris). However, whole mitogenomes revealed a different phylogeny: (crecca, nimia)(carolinensis, flavirostris). The best demographic model for key pairwise comparisons supported divergence with gene flow as the probable speciation mechanism in all three contrasts (crecca-nimia, crecca-carolinensis, and carolinensis-flavirostris). Given prior work, gene flow was expected among the Holarctic taxa, but gene flow between North American carolinensis and South American flavirostris (M â¼0.1-0.4 individuals/generation), albeit low, was not expected. Three geographically oriented modes of divergence are likely involved in the diversification of this complex: heteropatric (crecca-nimia), parapatric (crecca-carolinensis), and (mostly) allopatric (carolinensis-flavirostris). Our study shows that ultraconserved elements are a powerful tool for simultaneously studying systematics and population genomics in systems with historically uncertain relationships and species limits.
Assuntos
Patos , Fluxo Gênico , Humanos , Animais , Patos/genética , Filogenia , Metagenômica , DNA Mitocondrial/genéticaRESUMO
All Pseudocorynosoma species inhabit freshwater environments of the American continent, but little is known about their life cycles. We report Pseudocorynosoma enrietti (Molfi & Freitas Fernandes, 1953) from natural and experimental specimens in Patagonia and identify the intermediate and definitive hosts of its life cycle for the first time in South America. Adult worms were recovered from Anas platyrhynchos (Linnaeus) and from a new definitive host, Coscoroba coscoroba Molina. Naturally infected amphipods, Hyalella patagonica Ortmann, were collected to obtain cystacanths that were fed to Gallus gallus domesticus (Linnaeus) and Anas platyrhynchos. Specimens of P. enrietti are described in detail using light and scanning electron microscopy. A key to species of the genus Pseudocorynosoma is included. Worms are characterized in both sexes by fore-trunk spines, and genital spines in an isolated field. The proboscis has 19-20 hook rows; males have 9-11 (10) hooks per row and females 7-9 (8). Males with four cement glands similar in size. Eggs elongated, with filaments. Experimental male and female worms were recovered from A. platyrhynchos at seven and 14 days, post-infection.
Assuntos
Acantocéfalos , Anfípodes , Animais , Argentina , Patos , Feminino , Estágios do Ciclo de Vida , Masculino , América do SulRESUMO
Species loss has attracted much attention among scientists for more than half a century. However, we have little information on the trends in phylogenetic and functional changes behind the species loss although this information is always asynchronous and important for conservation and management. We measured community trends in Anatidae (ducks and geese) for the last 50 yr to quantify trends in phylogenetic and functional diversity patterns coinciding with taxonomic historical dynamics. We used one-way ANOVAs to test if there was a significant historical trend in communities of Anatidae. We characterized taxonomic, phylogenetic, and functional diversity of communities. For taxonomic diversity, we used species richness (SR). For phylogenetic diversity, we calculated the standardized effect size of mean pairwise distances (ses.MPD) and the standard effect size of mean nearest taxon distances (ses.MNTD) in communities. For functional diversity, we calculated functional richness (FRic), functional evenness (FEve), functional divergence (FDiv), and the community-level weighted means (CWM) of trait values for diet, foraging stratum, and body mass, separately. From the 1950s to 2010s, species richness declined without significant trends. The ses.MNTD of Anatidae communities showed no clear trends. However, ses.MPD of Anatidae communities declined dramatically during this period. For functional diversity, functional evenness of diet, foraging stratum, body mass, and functional dispersion of diet, foraging stratum did not increase or decline significantly. However, functional evenness of all traits, functional richness, and functional dispersion of body mass showed declined trends. The basic phylogenetic diversity and species body mass of Anatidae communities declined significantly because of a declining trend in the relative independent branch of geese. This makes it more challenging for implement community recovery in the future. More attention in conservation biology should consider taxonomic diversity and asynchrony in phylogenetic and functional diversity.
Assuntos
Biodiversidade , Áreas Alagadas , Animais , China , Patos , FilogeniaRESUMO
Pseudocorynosoma constrictum (Van Cleave, 1918) is a polymorphid acanthocephalan that attaches to the digestive tract of waterfowl to complete its life cycle, causing severe histological damage to its definitive avian hosts. In the present study, we present a histopathological analysis of the lesions that P. constrictum induced in the layers of the ileum of the blue-winged teal Anas discors. The results revealed that worms insert the attachment structures into the inner gut muscular layer, which causes substantial swelling, haemorrhaging and necrosis in the tissue near the parasite's proboscis. We also observed that the number of parasites attached to the tissue can obstruct the intestinal lumen; in the most serious case, we observed more than 30 parasites penetrating completely the walls of the bird intestine.
Assuntos
Acantocéfalos/patogenicidade , Aves/parasitologia , Íleo/patologia , Íleo/parasitologia , Acantocéfalos/anatomia & histologia , Animais , México , Mucosa/parasitologia , NecroseRESUMO
Chendytes lawi, an extinct flightless diving anseriform from coastal California, was traditionally classified as a sea duck, tribe Mergini, based on similarities in osteological characters. We recover and analyze mitochondrial genomes of C. lawi and five additional Mergini species, including the extinct Labrador Duck, Camptorhynchus labradorius. Despite its diving morphology, C. lawi is reconstructed as an ancient relictual lineage basal to the dabbling ducks (tribe Anatini), revealing an additional example of convergent evolution of characters related to feeding behavior among ducks. The Labrador Duck is sister to Steller's Eider which may provide insights into the evolution and ecology of this poorly known extinct species. Our results demonstrate that inclusion of full length mitogenomes, from taxonomically distributed ancient and modern sources can improve phylogeny reconstruction of groups previously assessed with shorter single-gene mitochondrial sequences.
Assuntos
Patos/classificação , Patos/genética , Genoma Mitocondrial/genética , Genômica , Animais , Teorema de Bayes , Evolução Biológica , Extinção Biológica , Comportamento Alimentar , FilogeniaRESUMO
For the first time to our knowledge, we demonstrate that whole angiosperm individuals can survive gut passage through birds, and that this occurs in the field. Floating plants of the genus Wolffia are the smallest of all flowering plants. Fresh droppings of white-faced whistling duck Dendrocygna viduata ( n = 49) and coscoroba swan Coscoroba coscoroba ( n = 22) were collected from Brazilian wetlands. Intact Wolffia columbiana were recovered from 16% of D. viduata and 32% of Coscoroba samples (total = 164 plantlets). The viability of plants was tested, and asexual reproduction was confirmed. Wolffia columbiana is an expanding alien in Europe. Avian endozoochory of asexual angiosperm propagules may be an important, overlooked dispersal means for aquatic plants, and may contribute to the invasive character of alien species.
Assuntos
Araceae/fisiologia , Patos/fisiologia , Dispersão Vegetal , Animais , Organismos Aquáticos , Brasil , Fezes , Espécies Introduzidas , Reprodução AssexuadaRESUMO
This report describes an outbreak of botulism occurred among a free-living population of mallards (Anas platyrhynchos) and geese (Anser anser) in an urban park. Mortality rate among investigated population was 86,8% (118 dead out of 136). Twenty-seven carcasses were collected for macroscopic examination and screened for microbiological, virological, toxicological investigations. A sick mallard was captured and neurological symptoms were observed. No causative agent of viral avian diseases was found in the examined animals and screening for environmental neurotoxic substances proved negative as well. In contrast, microbiological cultures from specimens tested positive for botulinum toxin-producing clostridia. Blood serum and fecal extract of the sick mallard proved positive for botulinum neurotoxin in the standard mouse protection test using reference Clostridium botulinum type C antitoxin. Gene content of cultured strains showed a mosaic composition of bont/C and bont/D sequences, defining them as type C/D chimeric organisms.
Assuntos
Doenças das Aves/microbiologia , Botulismo/veterinária , Animais , Animais Selvagens/sangue , Animais Selvagens/microbiologia , Doenças das Aves/epidemiologia , Toxinas Botulínicas/sangue , Toxinas Botulínicas/genética , Botulismo/epidemiologia , Botulismo/microbiologia , Clostridium botulinum/genética , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/metabolismo , Patos/sangue , Patos/microbiologia , Gansos/sangue , Gansos/microbiologia , Itália/epidemiologia , Parques RecreativosRESUMO
Zygocercous (aggregating) cercarial larvae were recently discovered emerging from a physid snail during a molecular survey of cercariae from molluscs in lakes in central Alberta, Canada. This manuscript delves into the characterization of these cercariae through morphological and molecular techniques and provides the first genetic information for a zygocercous larval trematode. Analyses of cytochrome c oxidase I of mitochondrial DNA and two partial regions of nuclear ribosomal DNA sequences revealed the zygocercous cercariae to belong to the genus Australapatemon Sudarikov, 1959. Further analyses of sequences of Australapatemon burti (Miller, 1923), from cercariae and adults collected from across North America, indicate a complex of nine genetically-distinct lineages within this species, a surprising level of diversity. The zygocercous cercariae, along with adult worms collected from ducks in Manitoba, Canada, and from Mexico, represent one of these lineages, and are herein described as Australapatemon mclaughlini n. sp. Seven lineages cannot yet be identified, but one is tentatively identified as Australapatemon burti.
Assuntos
Trematódeos/classificação , Animais , Cercárias/classificação , DNA Mitocondrial , DNA Ribossômico/genética , Patos/parasitologia , Tipagem Molecular , América do Norte , Filogenia , Caramujos/parasitologia , Trematódeos/genéticaRESUMO
The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large knowledge gap in geese. In this review, we assemble the available information on hybrid geese by focusing on three main themes: (1) incidence and frequency, (2) behavioural mechanisms leading to hybridization, and (3) hybrid fertility. Hybridization in geese is common on a species-level, but rare on a per-individual level. An overview of the different behavioural mechanisms indicates that forced extra-pair copulations and interspecific nest parasisitm can both lead to hybridization. Other sources of hybrids include hybridization in captivity and vagrant geese, which may both lead to a scarcity of conspecifics. The different mechanisms are not mutually exclusive and it is currently not possible to discriminate between the different mechanisms without quantitative data. Most hybrid geese are fertile; only in crosses between distantly related species do female hybrids become sterile. This fertility pattern, which is in line with Haldane's Rule, may facilitate interspecific gene flow between closely related species. The knowledge on hybrid geese should be used, in combination with the information available on hybridization in ducks, to study the process of avian speciation.
RESUMO
Documenting patterns of host specificity in parasites relies on the adequate definition of parasite species. In many cases, parasites have simplified morphology, making species delimitation based on traditional morphological characters difficult. Molecular data can help in assessing whether widespread parasites harbour cryptic species and, alternatively, in guiding further taxonomic revision in cases in which there is morphological variation. The duck louse genus Anaticola (Phthiraptera: Philopteridae), based on current taxonomy, contains both host-specific and widespread species. Mitochondrial and nuclear DNA sequences of samples from this genus were used to document patterns of host specificity. The comparison of these patterns with morphological variations in Anaticola revealed a general correspondence between the groups identified by DNA sequences and morphology, respectively. These results suggest that a more thorough taxonomic review of this genus is needed. In general, the groups identified on the basis of molecular data were associated with particular groups of waterfowl (e.g. dabbling ducks, sea ducks, geese) or specific biogeographic regions (e.g. North America, South America, Australia, Eurasia).
Assuntos
Doenças das Aves/parasitologia , Patos , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Infestações por Piolhos/veterinária , Ftirápteros/fisiologia , Animais , Núcleo Celular/genética , DNA/genética , DNA Mitocondrial/genética , Feminino , Infestações por Piolhos/parasitologia , Masculino , Ftirápteros/genética , Filogenia , Análise de Sequência de DNA/veterinária , Especificidade da EspécieRESUMO
Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.
Assuntos
Patos/classificação , Fluxo Gênico , Especiação Genética , Genética Populacional , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Patos/genética , Haplótipos , Íntrons , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNARESUMO
Accurate identification of waterfowl bones in archaeological and fossil assemblages has potential to unlock new methods of past environmental reconstruction, as species have differing habitat preferences and migration patterns. Therefore, identifying the presence of avian species with different ecological niches is key to determining past environments and ultimately how prehistoric people responded to climatic and environmental realignments. However, the identification of osteological remains of waterbirds such as ducks to species level is notoriously challenging. We address this by presenting a new two-dimensional geometric morphometric protocol on wing elements from over 20 duck species and test the utility of these shape data for correct species identification. This is an ideal starting point to expand utilization of these types of approaches in avifaunal research and test applicability to an extremely difficult taxonomic group.
Assuntos
Patos , Asas de Animais , Animais , Asas de Animais/anatomia & histologia , Patos/anatomia & histologia , Osteologia , Europa (Continente) , Fósseis/anatomia & histologiaRESUMO
Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria.
RESUMO
Habitat suitability analysis is essential in habitat and species conservation. Anatidae are known for their migratory behaviour, high population density, and wide distribution range. Understanding their habitat utilzation and influencing factors is crucial in targeted conservation and management. In this study, we collected Anatidae diversity data, including the number of species, through field surveys from October 2021 to March 2022 and thirty habitat variables through an online database in Anhui Province, China. By using MaxEnt, we simulated the habitat suitability of twenty-one Anatidae species, revealing potential distribution sites in Anhui Province. Generalized linear mixed models (GLMM) were employed to identify factors affecting the distribution of geese and ducks. The results showed that high-suitability habitats were predominantly located in the large lakes of the Yangtze River floodplain. The GLMM analysis showed significant correlations between Anatidae richness and altitude, distribution of farmland, and human footprint. In addition, ducks were more sensitive to the human interference factor than geese. In summary, the lakes in the Yangtze River floodplain emerged as the most important Anatidae habitats in Anhui Province due to their abundant wetland resources, flat terrain, and high distribution of farmlands. These findings provide a scientific basis for the development of relevant conservation strategies and measures, aiding in wildlife epidemic monitoring, prevention, and control.
RESUMO
Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.
RESUMO
Individual differences in aggressiveness, if consistent across time and contexts, may contribute to the long-term maintenance of social hierarchies in complex animal societies. Although agonistic interactions have previously been used to calculate individuals' positions within a dominance hierarchy, to date the repeatability of agonistic behaviour has not been tested when calculating social rank. Here, we examined the consistency and social relevance of aggressiveness as a personality trait in a free-flying population of greylag geese (Anser anser). For each individual, we quantified (i) aggressiveness using a standardized mirror stimulation test and (ii) dominance ranking based on the number of agonistic interactions won and lost in a feeding context. We found that individual differences in aggressiveness were significantly repeatable and that individuals' aggressiveness predicted their dominance rank position. The flock showed a robust and intermediately steep dominance hierarchy. Social rank was higher in paired birds, males and older birds, and most agonistic interactions occurred between individuals with moderate rank differences. We suggest that selection favours aggressiveness as a personality trait associated with resource acquisition and social rank, whereby a dominance hierarchy may increase the benefits of group living and reduce costs over conflict within dyads.
RESUMO
Aythya marila is a large diving duck belonging to the family Anatidae. However, the phylogenetic relationship among these Aythya species remains unclear due to the presence of extensive interspecific hybridization events within the Aythya genus. Here, we sequenced and annotated the complete mitochondrial genome of A. marila, which contained 22 tRNAs, 13 protein-coding genes (PCGs), 2 ribosomal RNAs, and 1 D-loop, with a length of 16,617 bp. The sizes of the PCGs ranged from 297 to 1824 bp and were all, except for ND6, located on the heavy chain (H). ATG and TAA were the most common start and termination codons of the 13 PCGs, respectively. The fastest- and slowest-evolving genes were ATP8 and COI, respectively. Codon usage analysis indicated that CUA, AUC, GCC, UUC, CUC, and ACC were the six most frequent codons. The nucleotide diversity values indicated a high level of genetic diversity in A. marila. FST analysis suggested a widespread gene exchange between A. baeri and A. nyroca. Moreover, phylogenetic reconstructions using the mitochondrial genomes of all available Anatidae species showed that, in addition to A. marila, four major clades among the Anatidae (Dendrocygninae, Oxyurinae, Anserinae, and Anatinae) were closely related to A. fuligula. Overall, this study provides valuable information on the evolution of A. marila and new insights into the phylogeny of Anatidae.
Assuntos
Patos , Genoma Mitocondrial , Animais , Patos/genética , Filogenia , Genoma Mitocondrial/genética , Sequência de Bases , Organismos Aquáticos/genéticaRESUMO
Ducks and geese are little studied dispersal vectors for plants lacking a fleshy fruit, and our understanding of the traits associated with these plants is limited. We analyzed 507 faecal samples of mallard (Anas platyrhynchos) and Canada goose (Branta canadensis) from 18 natural and urban wetlands in England, where they are the dominant resident waterfowl. We recovered 930 plant diaspores from 39 taxa representing 18 families, including 28 terrestrial and five aquatic species and four aliens. Mallards had more seeds and seed species per sample than geese, more seeds from barochory and hydrochory syndromes, and seeds that on average were larger and from plants with greater moisture requirements (i.e., more aquatic). Mallards dispersed more plant species than geese in natural habitats. Plant communities and traits dispersed were different between urban (e.g., more achenes) and natural (e.g., more capsules) habitats. Waterfowl can readily spread alien species from urban into natural environments but also allow native terrestrial and aquatic plants to disperse in response to climate heating or other global change. Throughout the temperate regions of the Northern Hemisphere, the mallard is accompanied by a goose (either the Canada goose or the greylag goose) as the most abundant waterfowl in urbanized areas. This combination provides a previously overlooked seed dispersal service for plants with diverse traits.