Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(8): e2216142120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791102

RESUMO

Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens control efforts across the continent, particularly in urban settings where the vector is able to proliferate. Malaria transmission is primarily determined by the abundance of dominant vectors, which often varies seasonally with rainfall. However, it remains unclear how An. stephensi abundance changes throughout the year, despite this being a crucial input to surveillance and control activities. We collate longitudinal catch data from across its endemic range to better understand the vector's seasonal dynamics and explore the implications of this seasonality for malaria surveillance and control across the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of which are poorly predicted by rainfall patterns. Instead, they are associated with temperature and patterns of land use; frequently differing between rural and urban settings. Our results show that timing entomological surveys to coincide with rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating these results into a malaria transmission model, we show that timing indoor residual spraying campaigns to coincide with peak rainfall offers little improvement in reducing disease burden compared to starting in a random month. Our results suggest that unlike other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need for longitudinal entomological monitoring of the vector in its new environments given recent invasion and potential spread across the continent.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Estações do Ano , Mosquitos Vetores , África/epidemiologia , Controle de Mosquitos
2.
J Biol Chem ; : 107759, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260695

RESUMO

Chemical insecticides (organophosphates and pyrethroids) in the form of IRS (Indoor Residual Sprays) and LLINs (Long Lasting insecticidal nets) are the cornerstone for vector control, globally. However, their incessant use has resulted in widespread development of resistance in mosquito vectors, warranting continuous monitoring and investigation of the underlying mechanisms of resistance. Here, we identified a previously uncharacterized- Cub and Sushi Domain containing Insecticide Resistance (CSDIR) protein and generated evidence for its role in mediating insecticide resistance in the Anopheles stephensi. A strong binding affinity of the CSDIR protein towards different classes of insecticide molecules-malathion (KD 6.43 µM) and deltamethrin (KD 46.7µM) were demonstrated using MD simulation studies and Surface Plasmon Resonance (SPR) experiments. Further, the recombinant CSDIR913-1190 protein exhibited potent esterase-like activity (α-naphthyl acetate (α-NA)- 1.356±0.262 mM/min/mg and ß-naphthyl acetate (ß -NA)- 1.777±0.220 mM/min/mg). Interestingly, dsRNA-mediated gene silencing of the CSDIR transcripts caused >60% mortality in resistant An. stephensi upon 1-hour exposure to deltamethrin and malathion insecticides, compared to the control group. A significant reduction in the esterase-like activity was also observed against α-NA (P=0.004) and ß-NA (P=0.025) in CSDIR silenced mosquitoes compared to the control group. Using computational analysis and experimental data, our results provided significant evidence of the involvement of the CSDIR protein in mediating insecticide resistance in Anopheles mosquitoes. Thereby making the CSDIR protein, a novel candidate for exploration of novel insecticide molecules. These data would also be helpful in further understanding the development of metabolic resistance by the Anopheles vector.

3.
Emerg Infect Dis ; 30(7): 1467-1471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916721

RESUMO

We detected malaria vector Anopheles stephensi mosquitoes in the Al Hudaydah governorate in Yemen by using DNA sequencing. We report 2 cytochrome c oxidase subunit I haplotypes, 1 previously found in Ethiopia, Somalia, Djibouti, and Yemen. These findings provide insight into invasive An. stephensi mosquitoes in Yemen and their connection to East Africa.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/parasitologia , Anopheles/classificação , Iêmen , Mosquitos Vetores/genética , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Malária/transmissão , Malária/epidemiologia , Filogenia
4.
Emerg Infect Dis ; 30(3): 605-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316032

RESUMO

The invasive Anopheles stephensi mosquito has rapidly expanded in range in Africa over the past decade. Consistent with World Health Organization guidelines, routine entomologic surveillance of malaria vectors in Accra, Ghana, now includes morphologic and molecular surveillance of An. stephensi mosquitoes. We report detection of An. stephensi mosquitoes in Ghana.


Assuntos
Anopheles , Malária , Animais , Gana/epidemiologia , Mosquitos Vetores , Malária/epidemiologia
5.
Emerg Infect Dis ; 30(9): 1770-1778, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38985536

RESUMO

Spread of the Anopheles stephensi mosquito, an invasive malaria vector, threatens to put an additional 126 million persons per year in Africa at risk for malaria. To accelerate the early detection and rapid response to this mosquito species, confirming its presence and geographic extent is critical. However, existing molecular species assays require specialized laboratory equipment, interpretation, and sequencing confirmation. We developed and optimized a colorimetric rapid loop-mediated isothermal amplification assay for molecular An. stephensi species identification. The assay requires only a heat source and reagents and can be used with or without DNA extraction, resulting in positive color change in 30-35 minutes. We validated the assay against existing PCR techniques and found 100% specificity and analytical sensitivity down to 0.0003 ng of genomic DNA. The assay can successfully amplify single mosquito legs. Initial testing on samples from Marsabit, Kenya, illustrate its potential as an early vector detection and malaria mitigation tool.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Técnicas de Amplificação de Ácido Nucleico , Animais , Anopheles/parasitologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Malária/transmissão , Malária/diagnóstico , Mosquitos Vetores/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Humanos , Quênia
6.
Insect Mol Biol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129057

RESUMO

Anopheles stephensi Liston, 1901 (Diptera: culicidae) is a competent vector of Plasmodium falciparum (Haemosporida: plasmodiidae) malaria, and its expansion in the African continent is of concern due to its viability in urban settings and resistance to insecticides. To enhance its genetic tractability, we determined the utility of a ~2 kb An. stephensi lipophorin (lp) promoter fragment in driving transgene expression. Lipophorin genes are involved in lipid transport in insects, and an orthologous promoter in An. gambiae (AGAP001826) was previously demonstrated to successfully express a transgene. In the present study, we qualitatively characterised the expression of a ZsYellow fluorescent marker protein, expressed by An. stephensi lp promoter fragment. Our study indicated that the lp promoter fragment was effective, generating a distinct expression pattern in comparison to the commonly utilised 3xP3 promoter. The lp:ZsYellow fluorescence was largely visible in early instar larvae and appeared more intense in later instar larvae, pupae and adults, becoming especially conspicuous in adult females after a blood meal. Different isolines showed some variation in expression pattern and intensity. Aside from general transgene expression, as the lp promoter produces a suitable fluorescent protein marker expression pattern, it may facilitate genotypic screening and aid the development of more complex genetic biocontrol systems, such as multi-component gene drives. This study represents an expansion of the An. stephensi genetic toolbox, an important endeavour to increase the speed of An. stephensi research and reach public health milestones in combating malaria.

7.
Arch Biochem Biophys ; 759: 110086, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38972626

RESUMO

Carboxypeptidase B (CPB) in Anopheles spp. breaks down blood and releases free amino acids, which promote Plasmodium sexual development in the mosquito midgut. Our goal was to computationally assess the inhibitory effectiveness of carboxypeptidase inhibitors obtained from tomato, potato (CPiSt), and leech against the Anopheles stephensi CPBAs1 and CPBAs2 enzymes. The tertiary structures of CPB inhibitors were predicted and their interaction mode with CPBAs1 and CPBAs2 were examined using molecular docking. Next, this data was compared with four licensed medications that are known to reduce the Anopheles' CPB activity. Molecular dynamics simulations were used to evaluate the stability of complexes containing CPiSt and its mutant form. Both CPiSt and its mutant form showed promise as possible candidates for further evaluations in the paratransgenesis technique for malaria control, based on the similar bindings of CPiSt and CPiSt-Mut to the active sites of CPBAs1 and CPBAs2, as well as their binding affinity in comparison to the drugs.


Assuntos
Anopheles , Carboxipeptidase B , Solanum lycopersicum , Solanum tuberosum , Anopheles/enzimologia , Animais , Solanum lycopersicum/enzimologia , Carboxipeptidase B/metabolismo , Carboxipeptidase B/química , Carboxipeptidase B/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
8.
Trop Med Int Health ; 29(9): 781-791, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39081142

RESUMO

BACKGROUND: Anopheles stephensi, a malaria-transmitting mosquito species, has developed resistance to various insecticides such as DDT, Dieldrin, Malathion, and synthetic pyrethroids. To combat this issue, the World Health Organization (WHO) suggests using Actellic®300CS and Icon®10CS for Indoor Residual Spraying to tackle pyrethroid-resistant mosquitoes. The aim of this research project was to evaluate the susceptibility of An. stephensi to certain insecticides at the diagnostic concentration + intensity 5x diagnostic concentration (5XDC) assays in Iran and to study the lasting effectiveness of Actellic®300CS and Icon®10CS against this particular malaria vector. METHODS: This study assessed the susceptibility of An. stephensi populations in southern Iran to various insecticides, including deltamethrin 0.05%, DDT 4%, malathion 5%, bendiocarb 0.1%, a synergist assay with PBO 4% combined with deltamethrin 0.05%, and an intensity assay using 5x the diagnostic concentration of deltamethrin (0.25%) and bendiocarb 0.5%. Laboratory cone bioassay tests were conducted to determine the residual effectiveness of Actellic®300 and Icon®10CS insecticides on different surfaces commonly found in households, such as cement, mud, plaster, and wood. The tests were carried out following the WHO test kits and standard testing protocols. RESULTS: The An. stephensi populations in Bandar Abbas were found to be susceptible to malathion 5% and deltamethrin 0.25% (5XDC), but exhibited resistance to DDT, standard concentration of deltamethrin, and both standard and intensity concentrations of bendiocarb. In laboratory cone bioassay tests, An. stephensi mortality rates when exposed to Actellic®300CS and Icon®10CS on different surfaces remained consistently more than 80%. Actellic®300CS achieved more than 80% mortality on all substrates for the entire 300-day post-spraying period. Conversely, Icon®10CS maintained mortality rates more than 80% on plaster and wood surfaces for 165 days and on mud and cement surfaces for 270 days post-spraying. Both Actellic®300CS and Icon®10CS demonstrated 100% mortality within 72 h of each test on all surfaces throughout the entire 300-day post-spraying period. CONCLUSION: The study shows the varying levels of resistance of An. stephensi Bandar Abbas population to different insecticides and demonstrates the consistent performance of Actellic®300CS in controlling these mosquitoes on various surfaces. The findings suggest that long-lasting CS formulations may be more effective for malaria vector control compared to the current options. Further research is needed to validate these findings in field settings and assess the impact of these insecticides on malaria transmission.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Anopheles/efeitos dos fármacos , Animais , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Malária/prevenção & controle , Irã (Geográfico) , Piretrinas/farmacologia , Nitrilas/farmacologia , DDT/farmacologia , Malation/farmacologia , Fenilcarbamatos/farmacologia
9.
Malar J ; 23(1): 211, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020365

RESUMO

BACKGROUND: Anopheles stephensi is recognized as the main malaria vector in Iran. In recent years, resistance to several insecticide classes, including organochlorine, pyrethroids, and carbamate compounds, has been reported for this medically important malaria vector. The main objective of the present study was to evaluate the insecticide susceptibility status of An. stephensi collected from the southern part of Iran, and to clarify the mechanism of resistance, using bioassay tests and molecular methods comparing the sequence of susceptible and resistant mosquitoes. METHODS: Mosquito larvae were collected from various larval habitats across six different districts (Gabrik, Sardasht, Tidar, Dehbarez, Kishi and Bandar Abbas) in Hormozgan Provine, located in the southern part of Iran. From each district standing water areas with the highest densities of Anopheles larvae were selected for sampling, and adult mosquitoes were reared from them. Finally, the collected mosquito species were identified using valid keys. Insecticide susceptibility of An. stephensi was tested using permethrin 0.75%, lambdacyhalothrin 0.05%, deltamethrin 0.05%, and DDT 4%, following the World Health Organization (WHO) test procedures for insecticide resistance monitoring. Additionally, knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene was sequenced and analysed among resistant populations to detect possible molecular mechanisms of observed resistance phenotypes. RESULTS: The susceptibility status of An. stephensi revealed that resistance to DDT and permethrin was found in all districts. Furthermore, resistance to all tested insecticides in An. stephensi was detected in Gabrik, Sardasht, Tidar, and Dehbarez. Analysis of knockdown resistance (kdr) mutations at the vgsc did not show evidence for the presence of this mutation in An. stephensi. CONCLUSION: Based on the results of the current study, it appears that in An. stephensi from Hormozgan Province (Iran), other resistance mechanisms such as biochemical resistance due to detoxification enzymes may be involved due to the absence of the kdr mutation or non-target site resistance. Further investigation is warranted in the future to identify the exact resistance mechanisms in this main malaria vector across the country.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Mutação , Anopheles/genética , Anopheles/efeitos dos fármacos , Animais , Irã (Geográfico) , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Piretrinas/farmacologia , Permetrina/farmacologia , DDT/farmacologia , Bioensaio , Nitrilas/farmacologia , Feminino
10.
Malar J ; 23(1): 42, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326842

RESUMO

BACKGROUND: Malaria is one of the most important vector-borne diseases of humans with an estimated 241 million cases worldwide in 2020. As an urban and periurban mosquito species, Anopheles stephensi is exposed to artificial human stimuli like light that can alter many aspects of mosquito behaviour, physiology and metabolism. Therefore, fluctuations in the light environment may influence the host, parasite and/or mosquito biology and hence modulate risk for disease transmission. In this study, the effect of artifitial light at night on mosquito infectivity by Plasmodium falciparum during the first hours of blood digestion was tested. METHODS: A total of three independent standard membrane feeding assays were performed to artificially fed septic and aseptic mosquitoes with P. falciparum infected blood. After blood feeding, females were transferred to incubators with different photoperiod cycles, so digestion occurred under day artificial light or dark. At 7 and 16 days post blood feeding, mosquitoes were dissected for midguts and salivary glands, respectively. Percentage of mosquitoes fed, percentage of prevalence and P. falciparum oocyst intensity between septic and aseptic mosquitoes in the two different photoperiod regimes, were compared using a Kruskal-Wallis test followed by a Dunn´s multiple comparison test . RESULTS: The exposition of mosquitoes to light after they took an infected blood meal has a negative effect on the successful progression of P. falciparum in the mosquito midgut. Antibiotic treatment significantly incremented the number of oocysts per midgut. Photophase significantly reduced the median oocyst intensity in both septic and aseptic mosquitoes. The percentage of oocyst reduction, understood as the percentage of reduction in the mean oocyst intensity of the parasite in the mosquito midgut between photophase and scotophase, was 51% in the case of aseptic mosquitoes and 80% for septic mosquitoes, both in the photophase condition. CONCLUSION: Although there are still many gaps in the understanding of parasite-mosquito interactions, these results support the idea that light can, not only, influence mosquito biting behaviour but also parasite success in the mosquito midgut. Hence, light can be considered an interesting additional mosquito-control strategy to reduce mosquito-borne diseases.


Assuntos
Anopheles , Malária Falciparum , Animais , Feminino , Humanos , Plasmodium falciparum , Anopheles/parasitologia , Iluminação , Mosquitos Vetores , Malária Falciparum/parasitologia , Oocistos
11.
BMC Infect Dis ; 24(1): 333, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509457

RESUMO

BACKGROUND: Anopheles stephensi is native to Southeast Asia and the Arabian Peninsula and has emerged as an effective and invasive malaria vector. Since invasion was reported in Djibouti in 2012, the global invasion range of An. stephensi has been expanding, and its high adaptability to the environment and the ongoing development of drug resistance have created new challenges for malaria control. Climate change is an important factor affecting the distribution and transfer of species, and understanding the distribution of An. stephensi is an important part of malaria control measures, including vector control. METHODS: In this study, we collected existing distribution data for An. stephensi, and based on the SSP1-2.6 future climate data, we used the Biomod2 package in R Studio through the use of multiple different model methods such as maximum entropy models (MAXENT) and random forest (RF) in this study to map the predicted global An. stephensi climatically suitable areas. RESULTS: According to the predictions of this study, some areas where there are no current records of An. stephensi, showed significant areas of climatically suitable for An. stephensi. In addition, the global climatically suitability areas for An. stephensi are expanding with global climate change, with some areas changing from unsuitable to suitable, suggesting a greater risk of invasion of An. stephensi in these areas, with the attendant possibility of a resurgence of malaria, as has been the case in Djibouti. CONCLUSIONS: This study provides evidence for the possible invasion and expansion of An. stephensi and serves as a reference for the optimization of targeted monitoring and control strategies for this malaria vector in potential invasion risk areas.


Assuntos
Anopheles , Malária , Humanos , Animais , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores
12.
Parasitol Res ; 123(9): 333, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331165

RESUMO

Urban areas in malaria-endemic countries in East Africa are experiencing a significant increase in malaria cases, with the establishment of an "exotic" urban malaria vector, Anopheles stephensi, increasing the risk of urban malaria. To this end, the present study aimed to investigate the emergence of this species in Arba Minch, Ethiopia. Following the detection of An. stephensi in other parts of Ethiopia, 76 artificial containers (55 discarded tyres, 18 concrete water storage, and three plastic containers) were sampled in 21 locations in Arba Minch town, for immature Anopheles mosquito stages, using the standard dipping technique. Larvae were reared into adults which were morphologically identified at the species level 2-3 days after emergence. Morphological identification results were confirmed by species-specific polymerase chain reaction. Of the examined containers, 67 (88%) had at least one Anopheles larva. Thirty-two of the adults emerged were morphologically identified as An. stephensi, with 26 (81%) confirmed by molecular analysis. This is the first study to report An. stephensi from Arba Minch, one of South Ethiopia's largest towns, highlighting the need for increased vigilance. The planned and ongoing study in and around Arba Minch will contribute to understanding the bionomics and role of An. stephensi in malaria parasite transmission, helping develop a strategy to address the impending risk of urban malaria in Ethiopia.


Assuntos
Anopheles , Larva , Malária , Mosquitos Vetores , Animais , Anopheles/parasitologia , Anopheles/classificação , Anopheles/fisiologia , Anopheles/crescimento & desenvolvimento , Etiópia , Malária/transmissão , Malária/epidemiologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/classificação , Larva/crescimento & desenvolvimento , Reação em Cadeia da Polimerase
13.
Chem Biodivers ; 21(4): e202301774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386290

RESUMO

This study is primarily focused on the synthesis of silver and copper oxide nanoparticles utilizing the extract of Ipomoea staphylina plant and their larvicidal activity against specific larvae. Notably, Anopheles stephensi and Aedes aegypti are significant disease vectors responsible for transmitting diseases such as malaria, dengue fever, Zika virus, and chikungunya (Anopheles stephensi), and dengue and Zika (Aedes aegypti). These mosquitoes have a substantial impact on urban areas, influencing disease transmission dynamics. In an effort to control these larvae, we have pursued the synthesis of a herbal-based nanomedicine derived from I. staphylina, a valuable herb in traditional medicine. Our successful synthesis of silver and CuO nanoparticles followed environmentally sustainable green chemistry methodologies. The I. staphylina plant extract played a dual role as a reducing agent and dopant, aligning with principles of sustainability. We employed X-ray diffraction (XRD) analysis to validate the nanoparticle structure and size, while field-emission scanning electron microscopy (FE-SEM) revealed well-defined nanostructures. Elemental composition was determined through energy-dispersive X-ray (EDX) analysis, and UV-visible spectroscopy provided insights into the bandgap energy (3.15 eV for silver, 1.2 eV for CuO nanoparticles). These nanoparticles exhibited robust larvicidal activity, with CuO nanoparticles surpassing silver nanoparticles in terms of LC50 and LC90 values. Moreover, the developmental toxicity of CuO and Ag NPs was evaluated in zebrafish embryos as part of non-target eco-toxicological studies conducted in a standard laboratory environment. These findings underscore the potential utility of these nanoparticles as highly effective and environmentally friendly natural pesticides, offering cost-effectiveness and ecological benefits.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Nanopartículas Metálicas , Zika virus , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Larva , Cobre/farmacologia , Peixe-Zebra , Mosquitos Vetores , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química , Óxidos
14.
Emerg Infect Dis ; 29(12): 2498-2508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37966106

RESUMO

The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread.


Assuntos
Anopheles , Pesquisa Biomédica , Malária , Animais , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores
15.
Emerg Infect Dis ; 29(1): 36-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573521

RESUMO

Reports of the expansion of the Asia malaria vector Anopheles stephensi mosquito into new geographic areas are increasing, which poses a threat to the elimination of urban malaria. Efficient surveillance of this vector in affected areas and early detection in new geographic areas is key to containing and controlling this species. To overcome the practical difficulties associated with the morphological identification of immature stages and adults of An. stephensi mosquitoes, we developed a species-specific PCR and a real-time PCR targeting a unique segment of the second internal transcribed spacer lacking homology to any other organism. Both PCRs can be used to identify An. stephensi mosquitoes individually or in pooled samples of mixed species, including when present in extremely low proportions (1:500). This study also reports a method for selective amplification and sequencing of partial ribosomal DNA from An. stephensi mosquitoes for their confirmation in pooled samples of mixed species.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Malária/epidemiologia , Mosquitos Vetores , Reação em Cadeia da Polimerase , DNA Ribossômico
16.
Emerg Infect Dis ; 29(4): 801-805, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958009

RESUMO

We describe the influence of seasonal meteorologic variations and rainfall events on Anopheles stephensi mosquito populations during a 40-month surveillance study at a US military base in Djibouti. Focusing surveillance and risk mitigation for An. stephensi mosquitoes when climatic conditions are optimal presents an opportunity for malaria prevention and control in eastern Africa.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Djibuti , Estações do Ano , Mosquitos Vetores
17.
Malar J ; 22(1): 373, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066610

RESUMO

BACKGROUND: Anopheles stephensi is an emerging exotic invasive urban malaria vector in East Africa. The World Health Organization recently announced an initiative to take concerted actions to limit this vector's expansion by strengthening surveillance and control in invaded and potentially receptive territories in Africa. This study sought to determine the invasion of An. stephensi in southern Ethiopia. METHODS: A targeted entomological survey, both larvae and adult, was conducted in Hawassa City, southern Ethiopia between November 2022 and February 2023. Anopheles larvae were reared to adults for species identification. CDC light traps and BG Pro traps were used indoors and outdoors overnight at selected houses to collect adult mosquitoes in the study area. Prokopack aspirator was employed to sample indoor resting mosquitoes in the morning. Adults of An. stephensi was identified using morphological keys and then confirmed by PCR. RESULTS: Larvae of An. stephensi were found in 28 (16.6%) of the 169 potential mosquito breeding sites surveyed. Out of 548 adult female Anopheles mosquitoes reared from larvae, 234 (42.7%) were identified as An. stephensi morphologically. A total of 449 female anophelines were caught, of which 53 (12.0%) were An. stephensi. Other anopheline species collected in the study area included Anopheles gambiae sensu lato (s.l.), Anopheles pharoensis, Anopheles coustani, and Anopheles demeilloni. CONCLUSION: This study confirmed the presence of An. stephensi in southern Ethiopia. The presence of both larval and adult stages of this mosquito attests that this species established sympatric colonization with native vector species such as An. gambiae (s.l.) in southern Ethiopia. The findings warrant further investigation on the ecology, behaviour, population genetics, and role of An. stephensi in malaria transmission in Ethiopia.


Assuntos
Anopheles , Malária , Animais , Feminino , Malária/epidemiologia , Etiópia/epidemiologia , Mosquitos Vetores , África Oriental , Larva
18.
Malar J ; 22(1): 48, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759908

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of an invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum parasites was first reported in Ethiopia in 2016. The ecology of An. stephensi is different from that of Anopheles arabiensis, the primary Ethiopian malaria vector, and this suggests that alternative control strategies may be necessary. Larviciding may be an effective alternative strategy, but there is limited information on the susceptibility of Ethiopian An. stephensi to common larvicides. This study aimed to evaluate the efficacy of temephos and Bacillus thuringiensis var. israelensis (Bti) larvicides against larvae of invasive An. stephensi. METHODS: The diagnostic doses of two larvicides, temephos (0.25 ml/l) and Bti (0.05 mg/l) were tested in the laboratory against the immature stages (late third to early fourth stages larvae) of An. stephensi collected from the field and reared in a bio-secure insectary. Larvae were collected from two sites (Haro Adi and Awash Subuh Kilo). For each site, three hundred larvae were tested against each insecticide (as well as an untreated control), in batches of 25. The data from all replicates were pooled and descriptive statistics prepared. RESULTS: The mortality of larvae exposed to temephos was 100% for both sites. Mortality to Bti was 99.7% at Awash and 100% at Haro Adi site. CONCLUSIONS: Larvae of An. stephensi are susceptible to temephos and Bti larvicides suggesting that larviciding with these insecticides through vector control programmes may be effective against An. stephensi in these localities.


Assuntos
Anopheles , Bacillus thuringiensis , Inseticidas , Malária , Animais , Feminino , Humanos , Temefós/farmacologia , Larva , Etiópia , Mosquitos Vetores , Inseticidas/farmacologia
19.
Malar J ; 22(1): 104, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945014

RESUMO

BACKGROUND: Anopheles stephensi is a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of both Plasmodium falciparum and Plasmodium vivax malaria. Perhaps most alarming, the characteristics of An. stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk. METHODS: In this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission by An. stephensi were created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations. RESULTS: Using the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability with An. stephensi presence. General patterns of poleward expansion for thermal suitability were seen for both P. falciparum and P. vivax transmission potential. CONCLUSIONS: Understanding the potential suitability for An. stephensi transmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , Humanos , Animais , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , África/epidemiologia , Mosquitos Vetores
20.
Malar J ; 22(1): 187, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337209

RESUMO

BACKGROUND: Anopheles stephensi is an efficient vector of both Plasmodium falciparum and Plasmodium vivax in South Asia and the Middle East. The spread of An. stephensi to countries within the Horn of Africa threatens progress in malaria control in this region as well as the rest of sub-Saharan Africa. METHODS: The available malaria data and the timeline for the detection of An. stephensi was reviewed to analyse the role of An. stephensi in malaria transmission in Horn of Africa of the Eastern Mediterranean Region (EMR) in Djibouti, Somalia, Sudan and Yemen. RESULTS: Malaria incidence in Horn of Africa of EMR and Yemen, increased from 41.6 in 2015 to 61.5 cases per 1000 in 2020. The four countries from this region, Djibouti, Somalia, Sudan and Yemen had reported the detection of An. stephensi as of 2021. In Djibouti City, following its detection in 2012, the estimated incidence increased from 2.5 cases per 1000 in 2013 to 97.6 cases per 1000 in 2020. However, its contribution to malaria transmission in other major cities and in other countries, is unclear because of other factors, quality of the urban malaria data, human mobility, uncertainty about the actual arrival time of An. stephensi and poor entomological surveillance. CONCLUSIONS: While An. stephensi may explain a resurgence of malaria in Djibouti, further investigations are needed to understand its interpretation trends in urban malaria across the greater region. More investment for multisectoral approach and integrated surveillance and control should target all vectors particularly malaria and dengue vectors to guide interventions in urban areas.


Assuntos
Anopheles , Malária , Animais , Humanos , Saúde Pública , Iêmen/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Organização Mundial da Saúde , Sudão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa