Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495978

RESUMO

Light-induced photocatalytic degradation of ceftiofur sodium (CFS) has been assessed in the presence of plasmonic zinc oxide nanostructures (ZnONSTs), like, ZnO nanoparticles, ZnO nanorods (ZnONRs) and ZnO nanoflowers (ZnONFs). Silver nanoparticles (Ag NPs) loaded ZnO nanostructures (Ag-ZnONSTs) are obtained through seed-assisted chemical reaction followed by chemical reduction of silver. The surface modification of ZnO nanostructures by Ag NPs effectually altered their optical properties. Further, the surface plasmonic effect of Ag NPs facilitates visible light absorption by ZnONSTs and improved the photogenerated electron and hole separation, which makes the ZnONSTs a more active photocatalyst than TiO2 (P25) nanoparticles. Especially, Ag-ZnONRs showed higher CFS oxidation rate constant (k' = 4.6 × 10-4 s-1) when compared to Ag-ZnONFs (k' = 2.8 × 10-4 s-1) and Ag-ZnONPs (k' = 2.5 × 10-4 s-1), owing to their high aspect ratio (60:1). The unidirectional transport of photogenerated charge carriers on the Ag-ZnONRs may be accountable for the observed high photocatalytic oxidation of CFS. The photocatalytic oxidation of CFS mainly proceeds through •OH radicals generated on the Ag-ZnONRs surface under light illumination. In addition, heterogeneous activation of peroxymonosulfate by Ag-ZnONRs accelerates the rate of photocatalytic mineralization of CFS. The quantification of oxidative radicals supports the proposed CFS oxidation mechanism. Stability studies of plasmonic Ag-ZnONSTs strongly suggests that it could be useful to clean large volume of pharmaceutical wastewater under direct solar light irradiation.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Prata/química , Iluminação , Nanopartículas Metálicas/química , Luz , Catálise
2.
Chemosphere ; 305: 135428, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760129

RESUMO

The ecological impacts of antibiotics and antibiotic resistance genes (ARGs) on water ecology remain elusive in natural environments. We investigated the influence of antibiotics, ARGs and salinity gradient on the surface water ecosystem. Cefquinome (104.2 ± 43.6 ng/L) and cefminox (16.2 ± 7.50 ng/L) cephalosporins were predominant in all sites. Antibiotic contamination was increased in the estuary ecosystems compared to the freshwater ecosystems by 6%. Bacterial diversity could resist changes in salinity, but the relative abundance of some bacterial genera; Pseudoalteromonas, Glaciecola, norank_f__Arcobacteraceae, and Pseudohongiella was increased in the estuary zone (salinity>0.2%). The eukaryotic composition was increased in the subsaline environments (<0.2%), but the higher salinity in the saline zone inhibited the eukaryotic diversity. The relative abundance of ARGs was significantly higher in the estuary than in freshwater ecosystems, and ARGs interactions and mobile elements (aac(6')-Ib(aka_aacA4)-01, tetR-02, aacC, intI1, intI-1(clinic), qacEdelta1-01, and strB) were the predominant factors responsible for the ARGs propagation. Antibiotics associated with corresponding and non-corresponding ARGs and potentially created an adverse environment that increased the predation and pathogenicity of the aquatic food web and inhibited the metabolic functions. Surface water are first-line-ecosystems receiving antibiotics and ARGs hence our findings provided vital insights into understanding their ecological consequences on surface water ecosystems.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Salinidade , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa