Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.877
Filtrar
1.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166126

RESUMO

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

2.
Small ; 20(14): e2306324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990401

RESUMO

Although the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross-infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g., blood and saliva) and pathogen-laden droplets are highly sought. In this study, petal-like nanostructures (PNSs) are synthesized through the vertical rearrangement of colloidal lamellar bilayers via evaporation-induced self-assembly of octadecylamine, silica-alumina sol, and diverse photosensitizer. The developed method is compatible with various fabrics and imparts visible-light-activated antimicrobial and superhydrophobic-based antifouling activities. PNS-coated fabrics could provide a high level of protection and effectively block pathogen transmission as exemplified by their ability to roll off viscous body fluids reducing bacterial droplet adhesion and to inactivate various microorganisms. The combination of antifouling and photobiocidal activities results in the complete inactivation of sprayed pathogen-laden droplets within 30 min. Thus, this study paves the way for effective contagious disease management and the protection of HCWs in general medical environments, inspiring further research on the fabrication of materials that integrate multiple useful functionalities.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Equipamento de Proteção Individual , Pessoal de Saúde , Anti-Infecciosos/farmacologia
3.
Small ; 20(1): e2305066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641187

RESUMO

Photocatalytic membranes can effectively integrate membrane separation and photocatalytic degradation processes to provide an eco-friendly solution for efficient water purification. It is of great significance to develop highly efficient photocatalytic membranes driven by visible light to ensure the long-term stability of membrane separation systems and the maximum utilization of solar energy. Metal-organic framework (MOF) is an emerging photocatalyst with a well-defined structure and tunable chemical properties, showing a broad application prospect in the construction of high-performance photocatalytic membranes. Herein, this work provides a comprehensive review of recent advancements in MOF-based photocatalytic membranes. Initially, this work outlines the main tailoring strategies that facilitate the enhancement of the photocatalytic activity of MOF-based photocatalysts. Next, this work introduces commonly used methods for fabricating MOF-based photocatalytic membranes. Subsequently, this work discusses the application and mechanisms of MOF-based photocatalytic membranes toward organic pollutant degradation, metal ion removal, and membrane fouling mitigation. Finally, challenges in developing MOF-based photocatalytic membranes and their practical applications are presented, while also pointing out future research directions toward overcoming these existing limitations.

4.
Small ; 20(36): e2401658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38693074

RESUMO

The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.


Assuntos
Incrustação Biológica , Cílios , Anêmonas-do-Mar , Propriedades de Superfície , Cílios/efeitos dos fármacos , Cílios/fisiologia , Incrustação Biológica/prevenção & controle , Animais , Porosidade , Biônica , Óxido Nítrico/metabolismo
5.
Small ; 20(37): e2311427, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38733219

RESUMO

MXene-based photocatalytic membranes provide significant benefits for wastewater treatment by effectively combining membrane separation and photocatalytic degradation processes. MXene represents a pioneering 2D photocatalyst with a variable elemental composition, substantial surface area, abundant surface terminations, and exceptional photoelectric performance, offering significant advantages in producing high-performance photocatalytic membranes. In this review, an in-depth overview of the latest scientific progress in MXene-based photocatalytic membranes is provided. Initially, a brief introduction to the structure and photocatalytic capabilities of MXene is provided, highlighting their pivotal role in promoting the photocatalytic process. Subsequently, in pursuit of the optimal MXene-based photocatalytic membrane, critical factors such as the morphology, hydrophilicity, and stability of MXenes are meticulously taken into account. Various preparation strategies for MXene-based photocatalytic membranes, including blending, vacuum filtration, and dip coating, are also discussed. Furthermore, the application and mechanism of MXene-based photocatalytic membranes in micropollutant removal, oil-water separation, and antibacterial are examined. Lastly, the challenges in the development and practical application of MXene-based photocatalytic membranes, as well as their future research direction are delineated.

6.
Small ; 20(24): e2309329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221705

RESUMO

Azobenzene, which activates its geometric and chemical structure under light stimulation enables noninvasive control of mass transport in many processes including membrane separations. However, producing azobenzene-decorated channels that have precise size tunability and favorable pore wall chemistry allowing fast and durable permeation to solvent molecules, remains a great challenge. Herein, an advanced membrane that comprises geometry and polarity gradients within covalent organic framework (COF) nanochannels utilizing photoisomerization of azobenzene groups is reported. Such functional variations afford reduced interfacial transfer resistance and enhanced solvent-philic pore channels, thus creating a fast solvent transport pathway without compromising selectivity. Moreover, the membrane sets up a densely covered defense layer to prevent foulant adhesion and the accumulation of cake layer, contributing to enhanced antifouling resistance to organic foulants, and a high recovery rate of solvent permeance. More importantly, the solvent permeance displays a negligible decline throughout the long-term filtration for over 40 days. This work reports the geometry and polarity gradients in COF channels induced by the conformation change of branched azobenzene groups and demonstrates the strong capability of this conformation change in realizing fast and durable molecular separations.

7.
Small ; 20(36): e2400205, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38676331

RESUMO

The conventional membranes used for separating oil/water emulsions are typically limited by the properties of the membrane materials and the impact of membrane fouling, making continuous long-term usage unachievable. In this study, a filtering electrode with synchronous self-cleaning functionality is devised, exhibiting notable antifouling ability and an extended operational lifespan, suitable for the continuous separation of oil/water emulsions. Compared with the original Ti foam, the in situ growth of NiTi-LDH (Layered double hydroxide) nano-flowers endows the modified Ti foam (NiTi-LDH/TF) with exceptional superhydrophilicity and underwater superoleophobicity. Driven by gravity, a rejection rate of over 99% is achieved for various emulsions containing oil content ranging from 1% to 50%, as well as oil/seawater emulsions. The flux recovery rate exceeds 90% after one hundred cycles and a 4-h filtration period. The enhanced separation performance is realized through the "gas bridge" effect during in situ aeration and electrochemical anodic oxidation. The internal aeration within the membrane pores contributes to the removal of oil foulants. This study underscores the potential of coupling foam metal filtration materials with electrochemical technology, providing a paradigm for the exploration of novel oil/water separation membranes.

8.
Small ; : e2405875, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308335

RESUMO

The conventional Slippery Liquid Infused Porous Surface (SLIPS) encounters challenges such as silicone oil leakage and complex manufacturing of rough substrate structures. Thus, it is crucial to develop a lubricant that is highly adaptable and less prone to loss for surface structures; a temperature-controlled method of infusing oleogel into a superhydrophobic surface (SHS) is presented in this paper. This approach draws inspiration from the characteristics of Nepenthes pitcher plant structures, albeit without the need for intricate pore-making or nanowire structures. It is demonstrated that this resulting surface has exceptional fog harvesting capability, with a fog harvesting efficiency of 0.3222 g cm-2 min-1, which is twice as high as that of the laser aluminum (Al) sheet (0.1553 g cm-2 min-1). Moreover, the surface exhibits remarkable anti-icing properties, significantly prolonging the icing time by 21-fold compared to the pure Al sheet while maintaining a minimal ice adhesion force of only 0.16 N. Additionally, the surface showcases excellent antifouling performance, because contaminated droplets readily slide off without leaving residue. The environmentally friendly and straightforward preparation process ensures that it is suitable for large-scale industrial applications.

9.
Small ; : e2402431, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934549

RESUMO

In drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis. Addressing this challenge, the precision drug testing organ chip (PreD chip) is introduced, an innovative platform engineered to minimize small molecule absorption while facilitating cell culture. This chip features a PDMS microchannel wall coated with a perfluoropolyether-based lubricant, providing slipperiness and antifouling properties. It also incorporates an ECM-coated semi-porous membrane that supports robust multicellular cultures. The PreD chip demonstrates its outstanding antifouling properties and resistance to various biological fluids, small molecule drugs, and plasma proteins. In simulating the human gut barrier, the PreD chip demonstrates highly enhanced sensitivity in tests for dexamethasone toxicity and is highly effective in assessing drug transport across the human blood-brain barrier. These findings emphasize the potential of the PreD chip in advancing organ chip-based drug testing methodologies.

10.
Crit Rev Microbiol ; 50(2): 168-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651058

RESUMO

Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Infecções Relacionadas a Cateter/etiologia , Infecções Relacionadas a Cateter/microbiologia , Infecções Urinárias/prevenção & controle , Cateteres Urinários/efeitos adversos , Cateteres Urinários/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Bactérias
11.
Chemistry ; 30(21): e202303096, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140811

RESUMO

Poly(dimethylsiloxane) (PDMS) is widely used in marine antifouling coatings due to its low surface energy property. However, certain drawbacks of PDMS coatings such as poor surface adhesion, weak mechanical properties, and inadequate static antifouling performance have hindered its practical applications. Herein, condensation polymerization is utilized to prepare PDMS-based polythiamine ester (PTUBAF) coatings that consist of PDMS, polytetrahydrofuran (PTMG), 2, 3, 5, 6-tetrafluoro-1, 4-benzenedimethanol (TBD) as the main chains and isobornyl acrylate(IBA) as the antifouling group. The surface adhesion to the substrate is enhanced due to the hydrogen bond between the coated carbamate group and the hydroxyl group on the surface of the substrate. Mechanical properties of PTUBAF are significantly improved due to the benzene ring and six-membered ring biphase hard structure. The strong synergistic effect of bactericidal groups and low surface energy surface endows the PTUBAF coating with outstanding antifouling performance. Due to the low surface energy surface, the PTUBAF coatings are also found to possess excellent anti-corrosion. Furthermore, since the PTUBAF coatings exhibit a visible light transmittance of 91 %, they can applied as protective films for smartphones. The proposed method has the potential to boost the production and practical applications of silicone-based coatings.

12.
Chemistry ; : e202403116, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292511

RESUMO

Biofouling and corrosion of submerged equipment caused by marine organisms severely restrict the rapid development of the marine industry. Traditional antifouling or anticorrosion coatings typically serve a sole purpose and exhibit limited degradability upon failure, rendering them inadequate for current demands. Herein, a novel imine-functionalized command-degradable bio-based epoxy coating (SAHPEP-DDM) with enhanced integrated antifouling and anticorrosion performances was synthesized utilizing 1,3-bis (3-aminopropyl)-1,1,3,3-tetramethyldisiloxane and syringaldehyde. Compared with commercial epoxy resins (E51-DDM) and polydimethylsiloxanes (PDMS), the SAHPEP-DDM coating exhibits superior antifouling and anticorrosion properties due to the existence of -C=N- and Si-O-Si chain segments in the cross-linking network. The coating shows promising resistance against bacteria, algae and proteins, as well as excellent corrosion resistance in artificial seawater. The coating also exhibits excellent chemical resistance in organic solvents as well as neutral and alkaline environments. Moreover, its controlled degradation after failure can be achieved in acid aqueous solutions through temperature and acidity adjustments, facilitated by the presence of -C=N-. This work presents a novel degradable coating successfully coupled the dual functions of antifouling and anticorrosion coatings, avoiding the employment of intermediate coat, indicating vast potential for application in marine engineering fields.

13.
Int Microbiol ; 27(1): 81-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37166536

RESUMO

For the control of biofouling, some paints based on compounds that are toxic to marine organisms have been used. There is an intensive search for biodegradable solutions that are friendly to non-target organisms. Bacteria have been shown to be a source of compounds with antifouling potential. In this work, the antifouling activity of a strain of Staphylococcus aureus was evaluated. Extracts activity against biofilm-forming bacteria and the toxicity against Artemia franciscana were evaluated. The extracts were incorporated in a hard gel and a paint matrix, and they were exposed to the sea. In both the laboratory and field, we found that the compounds produced by S. aureus have antifouling activity. The non-toxicity of the tested extracts against Artemia franciscana nauplii suggests that the extracts obtained from S. aureus could have a low ecological impact over non-target organisms. Significant differences were found in the percentage of organisms cover in hard gels with extracts and control. After 90 days, important differences were also observed between the percentage of organisms cover of the paints that contained extracts and the control. Dichloromethane extract is the most effective for the inhibition or delay of the settlement of organisms For this reason, they could be used in matrices with different applications, such as in the shipping industry, aquaculture, or any other in which biofouling is a cause of inconvenience.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Staphylococcus aureus , Biofilmes , Pintura
14.
Environ Sci Technol ; 58(37): 16656-16668, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39223699

RESUMO

Nanofiltration (NF) technology is pivotal for ensuring a sustainable and reliable supply of clean water. To address the critical need for advanced thin-film composite (TFC) polyamide (PA) membranes with exceptional permselectivity and fouling resistance for emerging contaminant purification, we introduce a novel high-performance NF membrane. This membrane features a selective polypiperazine (PIP) layer functionalized with amino-containing quaternary ammonium compounds (QACs) through an in situ interfacial polycondensation reaction. Our investigation demonstrated that precise QAC functionalization enabled the construction of the selective PA layer with increased surface area, enhanced microporosity, stronger electronegativity, and reduced thickness compared to the control PIP membrane. As a result, the QAC NF membrane exhibited an approximately 51% increase in water permeance compared to the control PIP membrane, while achieving superior retention capabilities for divalent salts (>99%) and emerging organic contaminants (>90%). Furthermore, the incorporation of QACs into the PIP selective layer was proved to be effective in mitigating mineral scaling by allowing selective passage of scale-forming cations, while simultaneously exhibiting strong antimicrobial properties to combat biofouling. The in situ QAC incorporation strategy presented in this study provides valuable guidelines for the fit-for-purpose design of the selective PA layer, which is crucial for the development of high-performance NF membranes for efficient water purification.


Assuntos
Incrustação Biológica , Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Sulfato de Cálcio/química , Nylons/química
15.
Environ Sci Technol ; 58(2): 1359-1368, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38079615

RESUMO

Lithium holds immense significance in propelling sustainable energy and environmental systems forward. However, existing sensors used for lithium monitoring encounter issues concerning their selectivity and long-term durability. Addressing these challenges is crucial to ensure accurate and reliable lithium measurements during the lithium recovery processes. In response to these concerns, this study proposes a novel approach involving the use of an MXene composite membrane with incorporated poly(sodium 4-styrenesulfonate) (PSS) as an antibiofouling layer on the Li+ ion selective electrode (ISE) sensors. The resulting MXene-PSS Li+ ISE sensor demonstrates exceptional electrochemical performance, showcasing a superior slope (59.42 mV/dec), lower detection limit (10-7.2 M), quicker response time (∼10 s), higher selectivity to Na+ (-2.37) and K+ (-2.54), and reduced impedance (106.9 kΩ) when compared to conventional Li+ ISE sensors. These improvements are attributed to the unique electronic conductivity and layered structure of the MXene-PSS nanosheet coating layer. In addition, the study exhibits the long-term accuracy and durability of the MXene-PSS Li+ ISE sensor by subjecting it to real wastewater testing for 14 days, resulting in sensor reading errors of less than 10% when compared to laboratory validation results. This research highlights the great potential of MXene nanosheet coatings in advancing sensor technology, particularly in challenging applications, such as detecting emerging contaminants and developing implantable biosensors. The findings offer promising prospects for future advancements in sensor technology, particularly in the context of sustainable energy and environmental monitoring.


Assuntos
Eletrodos Seletivos de Íons , Lítio , Nitritos , Elementos de Transição , Impedância Elétrica , Eletrônica
16.
Environ Sci Technol ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39344067

RESUMO

The antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) is an emerging pollutant in the marine environment, which may disrupt the thyroid endocrine system. However, DCOIT toxicity in relation to thyroid endocrine disruption and the underlying mechanisms remains largely unclear. In this study, in vivo, in silico, in vitro, and ex vivo assays were performed to clarify DCOIT's thyroid toxicity. First, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of DCOIT for an entire life cycle. The results demonstrated that DCOIT exposure potently stimulated the hypothalamic-pituitary-thyroid axis, characterized by hyperthyroidism symptom induction and prevalent key gene and protein upregulation in the brain. Moreover, the in silico and in vitro results evidenced that DCOIT could bind to thyroid hormone receptor ß (TRß) and interact synergistically with triiodothyronine, thus promoting GH3 cell proliferation. The CUT&Tag experiment found that DCOIT interfered with the affinity fingerprint of TRß to target genes implicated in thyroid hormone signaling cascade regulation. Furthermore, ex vivo, Chem-seq revealed that DCOIT directly bound to the genomic sequences of thyrotropin-releasing hormone receptor b and thyroid-stimulating hormone receptor in marine medaka brain tissues. In conclusion, the current multifaceted evidence confirmed that DCOIT has a strong potency for thyroid endocrine system disruption and provided comprehensive insights into its toxicity mechanisms.

17.
Environ Sci Technol ; 58(39): 17376-17385, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39305248

RESUMO

The membrane fouling derived from the accumulated dust pollutants and highly viscous oily particles causes irreversible damage to the filtration performance of air filters and results in a significant reduction in their service life. However, it is still challenging to construct high-efficiency and antifouling air filtration membranes with recyclable regeneration. Herein, the fluorine-free amphiphobic micro/nanofiber composite membrane was controllably constructed by integrating click chemistry reaction and electrospinning technique. Low-surface-energy fibers were constructed by a thiol-ene click chemical reaction between mercaptosilane and vinyl groups of polystyrene-butadiene-styrene (SBS), combined with hydroxyl-terminated poly(dimethylsiloxane) during the electrospinning process. The functional air filter is then prepared by the two-layer composite strategy. Because of the advantages of liquid-like fibrous surface and micro/nanofibrous porous structure, SBS/PAN composite membrane simultaneously shows superior antifouling performances of pollutants and filtration efficiency of over 97% PM0.3 removal. More importantly, the antifouling fibrous membrane still presents a stable and efficient filtration efficiency after multiple washes. Its service life in dust filtration environments is approximately 1.7 times longer than that of the substrate membrane. This work may provide a significant reference for the design of antifouling fiber membranes and high-efficiency air filters with long life spans and reusability.


Assuntos
Membranas Artificiais , Nanofibras , Nanofibras/química , Filtração , Filtros de Ar , Química Click , Flúor/química
18.
Macromol Rapid Commun ; : e2400674, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348161

RESUMO

Hydrophobic antifouling polymers capable of self-healing performance are highly desirable for industrial applications. However, the construction of self-healing, hydrophobic antifouling polymers is challenging considering their complex fouling environments, which are humid in aqueous environment. In this work, a self-healing hydrophobic polymer containing Fe3+-catechol coordination applicable to antifouling is synthesized. The hydrophobic fluoroalkyl segments in the polymers formed unique domains dispersed in a polydimethylsiloxane matrix. The as-synthesized polymers can completely restore their tensile strength, and their self-healing efficiency is above 90% in both artificial seawater and pure water because of the dynamic Fe3+-catechol coordination interactions. The as-synthesized polymer exhibited self-healing and antifouling properties against common marine bacteria. The colony adhesion and self-healing processes of the damaged coating in artificial seawater containing marine bacteria are characterized by laser confocal microscopy. This strategy may be useful for the development of future polymeric antifouling materials.

19.
Macromol Rapid Commun ; : e2400234, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824415

RESUMO

Invisible aligners have been widely used in orthodontic treatment but still present issues with plaque formation and oral mucosa abrasion, which can lead to complicated oral diseases. To address these issues, hydrophilic poly(sulfobetaine methacrylate) (polySBMA) coatings with lubricating, antifouling, and antiadhesive properties have been developed on the aligner materials (i.e., polyethylene terephthalate glycol, PETG) via a simple and feasible glycidyl methacrylate (GMA)-assisted coating strategy. Poly(GMA-co-SBMA) is grafted onto the aminated PETG surface via the ring-opening reaction of GMA (i.e., "grafting to" approach to obtain G-co-S coating), or a polySBMA layer is formed on the GMA-grafted PETG surface via free radical polymerization (i.e., "grafting from" approach to obtain G-g-S coating). The G-co-S and G-g-S coatings significantly reduce the friction coefficient of PETG surface. Protein adsorption, bacterial adhesion, and biofilm formation on the G-co-S- and G-g-S-coated surfaces are significantly inhibited. The performance of the coatings remains stable after storage in air or artificial saliva for 2 weeks. Both coatings demonstrate good biocompatibility in vitro and is not caused irritation to the oral mucosa of rats in vivo over 2 weeks. This study proposes a promising strategy for the development of invisible aligners with improved performance, which is beneficial for oral health treatment.

20.
Macromol Rapid Commun ; 45(4): e2300549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37983912

RESUMO

This study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. This approach combines thermoresponsive poly(2-alkyl-2-oxazoline)s, known for their inherent protein-repellent characteristics, with established antifouling motifs based on betaines. The polymer framework is constructed from various monomer types, including a novel benzophenone-modified 2-oxazoline for photocrosslinking and an azide-functionalized 2-oxazoline, allowing subsequent modification with alkyne-substituted antifouling motifs through copper(I)-catalyzed azide-alkyne cycloaddition. From these polymers surface-attached networks are created on benzophenone-modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2-alkyl-2-oxazoline)s can exhibit a lower critical solution temperature in water, their temperature-dependent solubility is compared to the swelling behavior of the surface-attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma is further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrate extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allow efficient penetration by plasma components, which can then be easily removed by rinsing with buffer.


Assuntos
Azidas , Hidrogéis , Humanos , Hidrogéis/química , Polímeros/química , Plasma , Alcinos , Benzofenonas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa