Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 299(8): 105009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406814

RESUMO

Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.


Assuntos
Liases , Selênio , Humanos , Liases/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Selenoproteínas , Células Jurkat
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975959

RESUMO

Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ketamina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Proteína Reelina/fisiologia , Animais , Proteínas Relacionadas a Receptor de LDL/fisiologia , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/fisiologia
3.
J Neurosci ; 42(20): 4054-4068, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35414534

RESUMO

Human apolipoprotein E receptor 2 (APOER2) is a type I transmembrane protein with a large extracellular domain (ECD) and a short cytoplasmic tail. APOER2-ECD contains several ligand-binding domains (LBDs) that are organized into exons with aligning phase junctions, which allows for in-frame exon cassette splicing events. We have identified 25 human APOER2 isoforms from cerebral cortex using gene-specific APOER2 primers, where the majority are exon-skipping events within the N-terminal LBD regions compared with six identified in the heart. APOER2 undergoes proteolytic cleavage in response to ligand binding that releases a C-terminal fragment (CTF) and transcriptionally active intracellular domain (ICD). We tested whether the diversity of human brain-specific APOER2 variants affects APOER2 cleavage. We found isoforms with differing numbers of ligand-binding repeats generated different amounts of CTFs compared with full-length APOER2 (APOER2-FL). Specifically, APOER2 isoforms lacking exons 5-8 (Δex5-8) and lacking exons 4-6 (Δex4-6) generated the highest and lowest amounts of CTF generation, respectively, in response to APOE peptide compared with APOER2-FL. The differential CTF generation of Δex5-8 and Δex4-6 coincides with the proteolytic release of the ICD, which mediates transcriptional activation facilitated by the Mint1 adaptor protein. Functionally, we demonstrated loss of mouse Apoer2 decreased miniature event frequency in excitatory synapses, which may be because of a decrease in the total number of synapses and/or VAMP2 positive neurons. Lentiviral infection with human APOER2-FL or Δex4-6 isoform in Apoer2 knockout neurons restored the miniature event frequency but not Δex5-8 isoform. These results suggest that human APOER2 isoforms have differential cleavage events and synaptic properties.SIGNIFICANCE STATEMENT Humans and mice share virtually the same number of protein-coding genes. However, humans have greater complexity of any higher eukaryotic organisms by encoding multiple protein forms through alternative splicing modifications. Alternative splicing allows pre-mRNAs transcribed from genes to be spliced in different arrangements, producing structurally and functionally distinct protein variants that increase proteomic diversity and are particularly prevalent in the human brain. Here, we identified 25 distinct human APOER2 splice variants from the cerebral cortex using gene-specific APOER2 primers, where the majority are exon-skipping events that exclude N-terminal ligand-binding regions of APOER2. We show that some of the APOER2 variants have differential proteolytic properties in response to APOE ligand and exhibit distinct synaptic properties.


Assuntos
Proteínas do Tecido Nervoso , Proteômica , Processamento Alternativo , Animais , Apolipoproteínas E/genética , Humanos , Proteínas Relacionadas a Receptor de LDL , Ligantes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
4.
Int J Neurosci ; : 1-15, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060511

RESUMO

INTRODUCTION: Granule cell dispersion (GCD) is pathognomonic of hippocampal sclerosis seen in the mesial temporal lobe epilepsy (MTLE). Current animal studies indicate deficiency of Reelin is associated with abnormal granule cell migration leading to GCD. The present study aimed to evaluate complete Reelin signalling pathway to assess whether Reelin deficiency is related to MTLE. MATERIALS AND METHODS: Hippocampal sclerosis was confirmed by H and E stain. To explore the amount and cellular location of the Reelin cascade molecules, the hippocampal tissues from MTLE surgery and controls (n = 15 each) were studied using Immuno-histochemistry (IHC). Additionally, confocal imaging was used to validate the IHC findings by co-localization of different proteins. Quantification of IHC images was performed using histo-score and confocal images by Image J software. RESULTS: Immune expression of active Reelin was significantly reduced in patients. Reelin receptors were deranged, apolipoprotein E receptor 2 was increased while very low-density lipoprotein receptor was reduced. Disabled-1, a downstream molecule was significantly reduced in MTLE. Its ultimate target, cofilin was thus disinhibited and expressed more in MTLE. Reelin cleaving protease, matrix metalloprotease-9 (MMP-9) and MMP-9 inhibitor, tissue inhibitor of matrix protease-1, showed reduced expression in extracellular matrix. Semi-quantification of immunohistochemistry was done using Histo (H) score. H score of Reelin in diseased patients was 15 against 125 for control patients. These results were validated by confocal fluorescence microscopy. CONCLUSIONS: Reelin signalling cascade was deranged in chronic MTLE. Pharmacological manipulation of Reelin cascade can be done at various levels and it may provide novel treatment options for MTLE.

5.
Genomics ; 114(2): 110318, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192893

RESUMO

Apolipoprotein E receptor 2 (Apoer2) is a synaptic receptor in the brain that binds disease-relevant ligand Apolipoprotein E (Apoe) and is highly alternatively spliced. We examined alternative splicing (AS) of conserved Apoer2 exons across vertebrate species and identified gain of exons in mammals encoding functional domains such as the cytoplasmic and furin inserts, and loss of an exon in primates encoding the eighth LDLa repeat, likely altering receptor surface levels and ligand-binding specificity. We utilized single molecule, long-read RNA sequencing to profile full-length Apoer2 isoforms and identified 68 and 48 unique full-length Apoer2 transcripts in the mouse and human cerebral cortex, respectively. Furthermore, we identified two exons encoding protein functional domains, the third EGF-precursor like repeat and glycosylation domain, that are tandemly skipped specifically in mouse. Our study provides new insight into Apoer2 isoform complexity in the vertebrate brain and highlights species-specific differences in splicing decisions that support functional diversity.


Assuntos
Processamento Alternativo , Proteínas Relacionadas a Receptor de LDL , Animais , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Mamíferos , Camundongos , Estrutura Terciária de Proteína , Splicing de RNA
6.
J Neurochem ; 156(5): 589-603, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32083308

RESUMO

Reelin is a protein that is best known for its role in controlling neuronal layer formation in the developing cortex. Here, we studied its role for post-natal cortical network function, which is poorly explored. To preclude early cortical migration defects caused by Reelin deficiency, we used a conditional Reelin knock-out (RelncKO ) mouse, and induced Reelin deficiency post-natally. Induced Reelin deficiency caused hyperexcitability of the neocortical network in vitro and ex vivo. Blocking Reelin binding to its receptors ApoER2 and VLDLR resulted in a similar effect. Hyperexcitability in RelncKO organotypic slice cultures could be rescued by co-culture with wild-type organotypic slice cultures. Moreover, the GABAB receptor (GABAB R) agonist baclofen failed to activate and the antagonist CGP35348 failed to block GABAB Rs in RelncKO mice. Immunolabeling of RelncKO cortical slices revealed a reduction in GABAB R1 and GABAB R2 surface expression at the plasma membrane and western blot of RelncKO cortical tissue revealed decreased phosphorylation of the GABAB R2 subunit at serine 892 and increased phosphorylation at serine 783, reflecting receptor deactivation and proteolysis. These data show a role of Reelin in controlling early network activity, by modulating GABAB R function. Cover Image for this issue: https://doi.org/10.1111/jnc.15054.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Proteínas da Matriz Extracelular/deficiência , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/deficiência , Receptores de GABA-B/fisiologia , Serina Endopeptidases/deficiência , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Feminino , Agonistas dos Receptores de GABA-B/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais/efeitos dos fármacos
7.
J Neurosci Res ; 99(1): 392-406, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652719

RESUMO

Axonal outgrowth is a fundamental process during the development of central (CNS) and peripheral (PNS) nervous system as well as in nerve regeneration and requires accurate axonal navigation and extension to the correct target. These events need proper coordination between membrane trafficking and cytoskeletal rearrangements and are under the control of the small GTPases of the Rho family, among other molecules. Reelin, a relevant protein for CNS development and synaptic function in the adult, is also present in the PNS. Upon sciatic nerve damage, Reelin expression increases and, on the other hand, mice deficient in Reelin exhibit an impaired nerve regeneration. However, the mechanism(s) involved the Reelin-dependent axonal growth is still poorly understood. In this work, we present evidence showing that Reelin stimulates dorsal root ganglia (DRG) regeneration after axotomy. Moreover, dissociated DRG neurons express the Reelin receptor Apolipoprotein E-receptor 2 and also require the presence of TC10 to develop their axons. TC10 is a Rho GTPase that promotes neurite outgrowth through the exocytic fusion of vesicles at the growth cone. Here, we demonstrate for the first time that Reelin controls TC10 activation in DRG neurons. Besides, we confirmed that the known CNS Reelin target Cdc42 is also activated in DRG and controls TC10 activity. Finally, in the process of membrane addition, we found that Reelin stimulates the fusion of membrane carriers containing the v-SNARE protein VAMP7 in vesicles that contain TC10. Altogether, our work shows a new role of Reelin in PNS, opening the option of therapeutic interventions to improve the regeneration process.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal/fisiologia , Proteínas R-SNARE/metabolismo , Serina Endopeptidases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Gânglios Espinais/metabolismo , Camundongos , Neurônios/metabolismo , Ratos Sprague-Dawley , Proteína Reelina
8.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244519

RESUMO

Niemann-Pick disease, type C1, is a cholesterol storage disease where unesterified cholesterol accumulates intracellularly. In the cerebellum this causes neurodegeneration of the Purkinje neurons that die in an anterior-to-posterior and time-dependent manner. This results in cerebellar ataxia as one of the major outcomes of the disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a significant role in the regulation of serum cholesterol levels by modulating LDL receptor levels on peripheral tissues. In the central nervous system, PCSK9 may have a similar effect on the closely related VLDL and ApoE2 receptors to regulate brain cholesterol. In addition, regulation of VLDLR and ApoER2 by PCSK9 may contribute to neuronal apoptotic pathways through Reelin, the primary ligand of VLDLR and ApoER2. Defects in reelin signaling results in cerebellar dysfunction leading to ataxia as seen in the Reeler mouse. Our recent findings that Pcsk9 is expressed ~8-fold higher in the anterior lobules of the cerebellum compared to the posterior lobule X, which is resistant to neurodegeneration, prompted us to ask whether PCSK9 could play a role in NPC1 disease progression. We addressed this question genetically, by characterizing NPC1 disease in the presence or absence of PCSK9. Analysis of double mutant Pcsk9-/-/Npc1-/- mice by disease severity scoring, motor assessments, lifespan, and cerebellar Purkinje cell staining, showed no obvious difference in NPC1 disease progression with that of Npc1-/- mice. This suggests that PCSK9 does not play an apparent role in NPC1 disease progression.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Animais , Apolipoproteína E2 , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doenças Neurodegenerativas , Proteína C1 de Niemann-Pick , Células de Purkinje/metabolismo , Receptores de LDL/metabolismo , Proteína Reelina
9.
EMBO Rep ; 18(6): 982-999, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28446613

RESUMO

Apolipoprotein E receptor 2 (ApoER2) is a close homologue of low-density lipoprotein receptor (LDLR) that mediates the endocytosis of ligands, including LDL particles. LDLR family members have been presumed to explore a large conformational space to capture ligands in the extended conformation at the cell surface. Ligands are subsequently released through a pH-titrated structural transition to a self-docked, contracted-closed conformation. In addition to lipoprotein uptake, ApoER2 is implicated in signal transduction during brain development through capture of the extracellular protein reelin. From crystallographic analysis, we determine that the full-length ApoER2 ectodomain adopts an intermediate contracted-open conformation when complexed with the signaling-competent reelin fragment, and we identify a previously unappreciated auxiliary low-affinity binding interface. Based on mutational analyses, we propose that the pH shift during endocytosis weakens the affinity of the auxiliary interface and destabilizes the ligand-receptor complex. Furthermore, this study elucidates that the contracted-open conformation of ligand-bound ApoER2 at neutral pH resembles the contracted-closed conformation of ligand-unbound LDLR at acidic pH in a manner suggestive of being primed for ligand release even prior to internalization.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas Relacionadas a Receptor de LDL/química , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Serina Endopeptidases/fisiologia , Animais , Células CHO , Moléculas de Adesão Celular Neuronais/química , Cricetulus , Cristalografia , Endocitose , Endossomos/fisiologia , Proteínas da Matriz Extracelular/química , Humanos , Concentração de Íons de Hidrogênio , Proteínas Relacionadas a Receptor de LDL/genética , Ligantes , Lipoproteínas LDL/metabolismo , Proteínas do Tecido Nervoso/química , Neurônios/fisiologia , Conformação Proteica , Receptores de LDL/metabolismo , Proteína Reelina , Serina Endopeptidases/química , Transdução de Sinais , Ressonância de Plasmônio de Superfície
10.
Cereb Cortex ; 28(1): 223-235, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909010

RESUMO

Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Córtex Cerebral/citologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Integrinas/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Reelina , Proteínas rap1 de Ligação ao GTP/metabolismo
11.
J Neurosci ; 37(4): 960-971, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123028

RESUMO

We discovered a hypomorphic reelin (Reln) mutant with abnormal cortical lamination and no cerebellar hypoplasia. This mutant, RelnCTRdel, carries a chemically induced splice-site mutation that truncates the C-terminal region (CTR) domain of RELN protein and displays remarkably distinct phenotypes from reeler The mutant does not have an inverted cortex, but cortical neurons overmigrate and invade the marginal zone, which are characteristics similar to a phenotype seen in the cerebral cortex of Vldlrnull mice. The dentate gyrus shows a novel phenotype: the infrapyramidal blade is absent, while the suprapyramidal blade is present and laminated. Genetic epistasis analysis showed that RelnCTRdel/Apoer2null double homozygotes have phenotypes akin to those of reeler mutants, while RelnCTRdel/Vldlrnull mice do not. Given that the receptor double knock-out mice resemble reeler mutants, we infer that RelnCTRdel/Apoer2null double homozygotes have both receptor pathways disrupted. This suggests that CTR-truncation disrupts an interaction with VLDLR (very low-density lipoprotein receptor), while the APOER2 signaling pathway remains active, which accounts for the hypomorphic phenotype in RelnCTRdel mice. A RELN-binding assay confirms that CTR truncation significantly decreases RELN binding to VLDLR, but not to APOER2. Together, the in vitro and in vivo results demonstrate that the CTR domain confers receptor-binding specificity of RELN. SIGNIFICANCE STATEMENT: Reelin signaling is important for brain development and is associated with human type II lissencephaly. Reln mutations in mice and humans are usually associated with cerebellar hypoplasia. A new Reln mutant with a truncation of the C-terminal region (CTR) domain shows that Reln mutation can cause abnormal phenotypes in the cortex and hippocampus without cerebellar hypoplasia. Genetic analysis suggested that CTR truncation disrupts an interaction with the RELN receptor VLDLR (very low-density lipoprotein receptor); this was confirmed by a RELN-binding assay. This result provides a mechanistic explanation for the hypomorphic phenotype of the CTR-deletion mutant, and further suggests that Reln mutations may cause more subtle forms of human brain malformation than classic lissencephalies.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/anormalidades , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ligação Proteica/fisiologia , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética
12.
Biochem J ; 474(18): 3137-3165, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28887403

RESUMO

Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Serina Endopeptidases/metabolismo , Animais , Transporte Biológico , Humanos , Proteína Reelina
13.
Mol Carcinog ; 56(2): 712-721, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27434856

RESUMO

Reelin is an extracellular matrix protein that plays a critical role in neuronal migration. Here we show that the mucosa of human colon expresses reelin, its receptors ApoER2 and VLDLR, and its effector protein Dab1. Immunohistochemical analyses reveal that reelin expression is restricted to pericryptal myofibroblasts; Dab1 is detected at myofibroblasts, the apical domain of surface epithelial and crypt cells, and a strong linear staining is observed at the basement membrane; VLDLR and ApoER2 are in the cytoplasm of surface epithelium and myofibroblasts, and VLDLR is also detected in the cytoplasm of the crypt cells. Human colorectal cancer downregulates reelin without change in vimentin or N-cadherin mRNA levels. Decreased Reelin mRNA expression is accompanied by decreased HIC1 mRNA levels, increased mRNA levels of ApoER2 and DNMT1, increased reelin hypermethylation and no change in either Cask or TGF-ß1 mRNAs, suggesting that reelin repression results from a DNMT1-mediated hypermethylation of the reelin gene promoter. Decreased HIC1 expression may repress reelin transcription via increasing ApoER2 transcription. We conclude that the mucosa of human colon expresses the reelin-Dab1 signaling system and that reelin is repressed in colorectal cancer before epithelial-mesenchymal transition has occurred. The significant down-regulation of reelin expression makes this gene a promising biomarker for colorectal cancers. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/análise , Moléculas de Adesão Celular Neuronais/análise , Colo/patologia , Neoplasias Colorretais/patologia , Proteínas da Matriz Extracelular/análise , Mucosa Intestinal/patologia , Proteínas do Tecido Nervoso/análise , Reto/patologia , Serina Endopeptidases/análise , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Caderinas/análise , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Colo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Proteínas Relacionadas a Receptor de LDL/análise , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de LDL/análise , Receptores de LDL/genética , Receptores de LDL/metabolismo , Reto/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
14.
Pharmacol Res ; 120: 157-169, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28363723

RESUMO

PCSK9 (proprotein convertase subtilisin kexin type 9) is a liver secretory enzyme that regulates plasma low-density lipoprotein (LDL) cholesterol (LDL-C) levels through modulation of LDL receptor (LDLR) density on the surface of hepatocytes. Inhibition of PCSK9 using monoclonal antibodies can efficiently lower plasma LDL-C, non-high-density lipoprotein cholesterol and lipoprotein (a). PCSK9 inhibition is also an effective adjunct to statin therapy; however, the cost-effectiveness of currently available PCSK9 inhibitors is under question. Nutraceuticals offer a safe and cost-effective option for PCSK9 inhibition. Several nutraceuticals have been reported to modulate PCSK9 levels and exert LDL-lowering activity. Mechanistically, those nutraceuticals that inhibit PCSK9 through a SREBP (sterol-responsive element binding protein)-independent pathway can be more effective in lowering plasma LDL-C levels compared with those inhibiting PCSK9 through the SREBP pathway. The present review aims to collect available data on the nutraceuticals with PCSK9-inhibitory effect and the underlying mechanisms.


Assuntos
Anticolesterolemiantes/farmacologia , Suplementos Nutricionais , Inibidores Enzimáticos/farmacologia , Inibidores de PCSK9 , Pró-Proteína Convertase 9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anticolesterolemiantes/uso terapêutico , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Suplementos Nutricionais/análise , Inibidores Enzimáticos/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pró-Proteína Convertase 9/genética , Ativação Transcricional/efeitos dos fármacos
15.
Mol Cell Neurosci ; 69: 1-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26386179

RESUMO

ApoER2 and its ligand Reelin participate in neuronal migration during development. Upon receptor binding, Reelin induces the proteolytic processing of ApoER2 as well as the activation of signaling pathway, including small Rho GTPases. Besides its presence in the central nervous system (CNS), Reelin is also secreted by Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS). Reelin deficient mice (reeler) show decreased axonal regeneration in the PNS; however neither the presence of ApoER2 nor the role of the Reelin signaling pathway in the PNS have been evaluated. Interestingly SC migration occurs during PNS development and during injury-induced regeneration and involves activation of small Rho GTPases. Thus, Reelin-ApoER2 might regulate SC migration during axon regeneration in the PNS. Here we demonstrate the presence of ApoER2 in PNS. After sciatic nerve injury Reelin was induced and its receptor ApoER2 was proteolytically processed. In vitro, SCs express both Reelin and ApoER2 and Reelin induces SC migration. To elucidate the molecular mechanism underlying Reelin-dependent SC migration, we examined the involvement of Rac1, a conspicuous small GTPase family member. FRET experiments revealed that Reelin activates Rac1 at the leading edge of SCs. In addition, Tiam1, a major Rac1-specific GEF was required for Reelin-induced SC migration. Moreover, Reelin-induced SC migration was decreased after suppression of the polarity protein PAR3, consistent with its association to Tiam1. Even more interesting, we demonstrated that PAR3 binds preferentially to the full-length cytoplasmic tail of ApoER2 corresponding to the splice-variant containing the exon 19 that encodes a proline-rich insert and that ApoER2 was required for SC migration. Our study reveals a novel function for Reelin/ApoER2 in PNS, inducing cell migration of SCs, a process relevant for PNS development and regeneration.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Células de Schwann/citologia , Serina Endopeptidases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ligação Proteica/fisiologia , Proteína Reelina , Transdução de Sinais/fisiologia
16.
Exp Cell Res ; 319(13): 1956-1972, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23701949

RESUMO

We identified syntaxin 5 (Stx5), a protein involved in intracellular vesicle trafficking, as a novel interaction partner of the very low density lipoprotein (VLDL)-receptor (VLDL-R), a member of the LDL-receptor family. In addition, we investigated the effect of Stx5 on VLDL-R maturation, trafficking and processing. Here, we demonstrated mutual association of both proteins using several in vitro approaches. Furthermore, we detected a special maturation phenotype of VLDL-R resulting from Stx5 overexpression. We found that Stx5 prevented advanced Golgi-maturation of VLDL-R, but did not cause accumulation of the immature protein in ER, ER to Golgi compartments, or cis-Golgi ribbon, the main expression sites of Stx5. Rather more, abundantly present Stx5 was capable of translocating ER-/N-glycosylated VLDL-R to the plasma membrane, and thus was insensitive to BFA treatment and low temperature. Furthermore, abundant presence of Stx5 significantly interfered with VLDL-R reaching the trans-Golgi network. Based on our findings, we postulate that Stx5 can directly bind to the C-terminal domain of VLDL-R, thereby influencing the receptor's glycosylation, trafficking and processing characteristics. Resulting from that, we further suggest that Stx5 might play a role in modulating VLDL-R physiology by participating in an abrasively described or completely novel Golgi-bypass pathway.


Assuntos
Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiologia , Receptores de LDL/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/genética , Transporte Proteico/genética , Proteínas Qa-SNARE/genética , Receptores de LDL/genética , Via Secretória/genética , Rede trans-Golgi/metabolismo
17.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281682

RESUMO

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Assuntos
Complexo 4 de Proteínas Adaptadoras , Proteínas Relacionadas a Receptor de LDL , Paraplegia Espástica Hereditária , Animais , Humanos , Camundongos , Complexo 4 de Proteínas Adaptadoras/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Células HeLa , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de Superfície Celular , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
18.
Cells ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607022

RESUMO

Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios , Encefalomielite Autoimune Experimental , Proteína Reelina , Animais , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Proteína Reelina/antagonistas & inibidores , Inflamação/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
19.
J Alzheimers Dis ; 97(2): 753-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217595

RESUMO

BACKGROUND: Apolipoprotein E4 (APOE4) is the most prevalent genetic risk factor of Alzheimer's disease. Several studies suggest that APOE4 binding to its receptors is associated with their internalization and accumulation in intracellular compartments. Importantly, this phenomenon also occurs with other, non-ApoE receptors. Based on these observations, we hypothesized that APOE4 pathological effects are mediated by impairment in the life cycle of distinct receptors (APOER2, LRP1, IR, VEGFR). OBJECTIVE: To examine the effects of APOE genotype on receptors protein levels and compartmentalization. METHODS: Primary mouse neurons were prepared from APOE3 or APOE4 targeted replacement mice, or APOE-KO mice. Specific receptors protein levels were evaluated in these neurons, utilizing immunofluorescent staining. Additionally, surface membrane protein levels of those receptors were assessed by cell surface biotinylation assay and ELISA. Receptors' colocalization with intracellular compartments was assessed by double staining and confocal microscopy, followed by colocalization analysis. Finally, LRP1 or APOER2 were knocked-down with CRISPR/Cas9 system to examine their role in mediating APOE4 effects on the receptors. RESULTS: Our results revealed lower receptors' levels in APOE4, specifically on the membrane surface. Additionally, APOE4 affects the compartmentation of these receptors in two patterns: the first was observed with LRP1 and was associated with decreased receptor levels in numerous intracellular compartments. The second was obtained with the other receptors and was associated with their accumulation in early endosomes and their decrease in the late endosomes. CONCLUSIONS: These results provide a unifying mechanism, in which APOE4 drives the down regulation of various receptors, which plays important roles in distinct APOE4 related pathological processes.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Camundongos Transgênicos , Apolipoproteínas E , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo
20.
Biochem Biophys Res Commun ; 440(3): 424-30, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24076391

RESUMO

The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) is located in 17p13.3 a region frequently hypermethylated or deleted in tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome which includes classical lissencephaly (smooth brain) and severe developmental defects. HIC1 encodes a transcriptional repressor involved in the regulation of growth control, DNA damage response and cell migration properties. We previously demonstrated that the membrane-associated G-protein-coupled receptors CXCR7, ADRB2 and the tyrosine kinase receptor EphA2 are direct target genes of HIC1. Here we show that ectopic expression of HIC1 in U2OS and MDA-MB-231 cell lines decreases expression of the ApoER2 and VLDLR genes, encoding two canonical tyrosine kinase receptors for Reelin. Conversely, knock-down of endogenous HIC1 in BJ-Tert normal human fibroblasts through RNA interference results in the up-regulation of these two Reelin receptors. Finally, through chromatin immunoprecipitation (ChIP) in BJ-Tert fibroblasts, we demonstrate that HIC1 is a direct transcriptional repressor of ApoER2 and VLDLR. These data provide evidence that HIC1 is a new regulator of the Reelin pathway which is essential for the proper migration of neuronal precursors during the normal development of the cerebral cortex, of Purkinje cells in the cerebellum and of mammary epithelial cells. Deregulation of this pathway through HIC1 inactivation or deletion may contribute to its role in tumor promotion. Moreover, HIC1, through the direct transcriptional repression of ATOH1 and the Reelin receptors ApoER2 and VLDLR, could play an essential role in normal cerebellar development.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Células de Purkinje/fisiologia , Receptores de Superfície Celular/genética , Receptores de LDL/genética , Sequência de Bases , Linhagem Celular Tumoral , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Metilação de DNA , Humanos , Células de Purkinje/metabolismo , Proteína Reelina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa