Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Cell ; 108(7): 189-204, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27018635

RESUMO

BACKGROUND INFORMATION: Efficient clearance of apoptotic cells, named efferocytosis, is a fundamental physiological process for tissue development and homeostasis. The contribution of non-professional phagocytes like fibroblasts to efferocytosis has been established, although the underlying mechanisms are not well understood. We recently demonstrated that horizontal DNA transfer can occur through the uptake of apoptotic human papillomavirus-positive cancer cells by human primary fibroblasts leading to their transformation. The aim of this present study was to analyse the cellular and molecular mechanisms that drive the phagocytic activity of human primary fibroblasts in the context of apoptotic cervical cancer cell removal. RESULTS: Here we provide evidence that human primary fibroblasts engulf late more efficiently than early apoptotic cells, but their phagocytic ability remains limited compared to professional phagocytes such as human monocyte-derived macrophages. The engulfment occurs in a time-, temperature- and calcium-dependent manner. Remodelling of actin-fibers contributes to the biogenesis of apoptotic cell containing macroendocytic vacuoles. Both morphological analyses and pharmacological approaches confirmed the involvement of actin-driven phagocytosis and likely macropinocytotic mechanisms in apoptotic target internalization. The uptake of apoptotic cells requires phosphatidylserine recognition, which is mainly mediated by phosphatidylserine-receptor brain-specific angiogenesis inhibitor 1. Confocal microscopy analyses with organelle-specific markers revealed that internalised apoptotic material traffics into late phagolysosomes and specific features of microtubule-associated protein 1 light chain 3-associated phagocytosis were observed. CONCLUSIONS: Our in vitro data show that fibroblasts contribute to apoptotic tumour cell removal by phagocytosis and likely macropinocytotic mechanisms. Efferocytosis by fibroblasts involves phosphatidylserine receptor brain-specific angiogenesis inhibitor 1, which participates in subsequent uptake orchestration via actin cytoskeleton remodelling. SIGNIFICANCE: Our results highlight the cellular and molecular mechanisms of fibroblast-mediated clearance of apoptotic tumour cells. Consequences regarding alternative mechanism of carcinogenesis or tumour progression should be addressed.


Assuntos
Apoptose , Fibroblastos/metabolismo , Papillomaviridae , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Adulto , Feminino , Fibroblastos/patologia , Células HeLa , Humanos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/patologia
2.
Front Pharmacol ; 13: 1043056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467088

RESUMO

The ultimate goal of cancer treatment is to kill cancer cells, based on the use of various therapeutic agents, such as chemotherapy, radiotherapy, or targeted therapy drugs. Most drugs exert their therapeutic effects on cancer by targeting apoptosis. However, alterations in apoptosis-related molecules and thus assisting cells to evade death, eventually lead to tumor cell resistance to therapeutic drugs. The increased incidence of non-apoptotic cell death modes such as induced autophagy, mitotic catastrophe, senescence, and necrosis is beneficial to overcoming multidrug resistance mediated by apoptosis resistance in tumor cells. Therefore, investigating the function and mechanism of drug-induced non-apoptotic cell death modes has positive implications for the development of new anti-cancer drugs and therapeutic strategies. Phytochemicals show strong potential as an alternative or complementary medicine for alleviating various types of cancer. Quercetin is a flavonoid compound widely found in the daily diet that demonstrates a significant role in inhibiting numerous human cancers. In addition to direct pro-tumor cell apoptosis, both in vivo and in vitro experiments have shown that quercetin exerts anti-tumor properties by triggering diverse non-apoptotic cell death modes. This review summarized the current status of research on the molecular mechanisms and targets through which quercetin-mediated non-apoptotic mode of cancer cell death, including autophagic cell death, senescence, mitotic catastrophe, ferroptosis, necroptosis, etc.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa