Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Exp Cell Res ; 436(2): 113954, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307188

RESUMO

The trafficking of aquaporin 5 (AQP5) is critical for salivary secretion. Synaptosomal-associated protein 23 (SNAP23) is an important regulator in the process of membrane fusion. However, the role of SNAP23 on AQP5 trafficking has not been explored. Botulinum toxin type A (BoNT/A) is a bacterial toxin that effectively treats sialorrhea. We previously reported that BoNT/A induced AQP5 redistribution in cultured acinar cells, but the mechanism remained unclear. In this study, SNAP23 was predominantly localized to the plasma membrane of acinar cells in the rat submandibular gland (SMG) and colocalized with AQP5 at the apical membrane of acinar cells. In stable GFP-AQP5-transfected SMG-C6 cells, the acetylcholine receptor agonist carbachol (CCh) induced trafficking of AQP5 from intracellular vesicles to the apical membrane. Furthermore, SNAP23 knockdown by siRNA significantly inhibited CCh-induced AQP5 trafficking, whereas this inhibitory effect was reversed by SNAP23 re-expression, indicating that SNAP23 was essential in AQP5 trafficking. More importantly, BoNT/A inhibited salivary secretion from SMGs, and the underlying mechanism involved that BoNT/A blocked CCh-triggered AQP5 trafficking by decreasing SNAP23 in acinar cells. Taken together, these results identified a crucial role for SNAP23 in AQP5 trafficking and provided new insights into the mechanism of BoNT/A in treating sialorrhea and thereby a theoretical basis for clinical applications.


Assuntos
Toxinas Botulínicas Tipo A , Sialorreia , Ratos , Animais , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Células Acinares , Sialorreia/metabolismo , Glândula Submandibular/metabolismo
2.
Am J Physiol Cell Physiol ; 326(1): C206-C213, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047298

RESUMO

People with primary focal hyperhidrosis (PFH) usually have an overactive sympathetic nervous system, which can activate the sweat glands through the chemical messenger of acetylcholine. The role of aquaporin 5 (AQP5) and Na-K-2Cl cotransporter 1 (NKCC1) in PFH is still unknown. The relative mRNA and protein levels of AQP5 and NKCC1 in the sweat gland tissues of three subtypes of patients with PFH (primary palmar hyperhidrosis, PPH; primary axillary hyperhidrosis, PAH; and primary craniofacial hyperhidrosis, PCH) were detected with real-time PCR (qPCR) and Western blot. Primary sweat gland cells from healthy controls (NPFH-SG) were incubated with different concentrations of acetylcholine, and the relative mRNA and protein expression of AQP5 and NKCC1 were also detected. NPFH-SG cells were also transfected with si-AQP5 or shNKCC1, and acetylcholine stimulation-induced calcium transients were assayed with Fluo-3 AM calcium assay. Upregulated AQP5 and NKCC1 expression were observed in sweat gland tissues, and AQP5 demonstrated a positive Pearson correlation with NKCC1 in patients with PPH (r = 0.66, P < 0.001), patients with PAH (r = 0.71, P < 0.001), and patients with PCH (r = 0.62, P < 0.001). Upregulated AQP5 and NKCC1 expression were also detected in primary sweat gland cells derived from three subtypes of patients with PFH when compared with primary sweat gland cells derived from healthy control. Acetylcholine stimulation could induce the upregulated AQP5 and NKCC1 expression in NPFH-SG cells, and AQP5 or NKCC1 inhibitions attenuated the calcium transients induced by acetylcholine stimulation in NPFH-SG cells. The dependence of ACh-stimulated calcium transients on AQP5 and NKCC1 expression may be involved in the development of PFH.NEW & NOTEWORTHY The dependence of ACh-stimulated calcium transients on AQP5 and Na-K-2Cl cotransporter 1 (NKCC1) expression may be involved in the development of primary focal hyperhidrosis (PFH).


Assuntos
Aquaporina 5 , Hiperidrose , Humanos , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Cálcio/metabolismo , Técnicas de Cultura de Células , Hiperidrose/metabolismo , RNA Mensageiro/metabolismo , Glândulas Sudoríparas/química , Glândulas Sudoríparas/metabolismo
3.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171773

RESUMO

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Assuntos
Lycium , Síndrome de Sjogren , Xerostomia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Lycium/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Xerostomia/induzido quimicamente , Xerostomia/prevenção & controle , Xerostomia/complicações , Síndrome de Sjogren/complicações , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética
4.
J Proteome Res ; 22(9): 2803-2813, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549151

RESUMO

Aging-related salivary gland degeneration usually causes poor oral health. Periductal fibrosis frequently occurs in the submandibular gland of the elderly. Transforming growth factor ß1 (TGF-ß1) is the primary driving factor for fibrosis, which exhibits an increase in the fibrotic submandibular gland tissue. This study aimed to investigate the effects of TGF-ß1 on the human submandibular gland (HSG) cell secretory function and its influences on aquaporin 5 (AQP5) expressions and distribution. We found that TGF-ß1 reduces the protein secretion amount of HSG and leads to the abundance alteration of 151 secretory proteins. Data are available via ProteomeXchange with the identifier PXD043185. The majority of HSG secretory proteins (84.11%) could be matched to the human saliva proteome. Meanwhile, TGF-ß1 enhances the expression of COL4A2, COL5A1, COL7A1, COL1A1, COL2A1, and α-SMA, hinting that TGF-ß1 possesses the potential to drive HSG fibrosis-related events. Besides, TGF-ß1 also attenuates the AQP5 expression and its membrane distribution in HSGs. The percentage for TGF-ß1-induced AQP5 reduction (52.28%) is much greater than that of the TGF-ß1-induced secretory protein concentration reduction (16.53%). Taken together, we concluded that TGF-ß1 triggers salivary hypofunction via attenuating protein secretion and AQP5 expression in HSGs, which may be associated with TGF-ß1-driven fibrosis events in HSGs.


Assuntos
Aquaporina 5 , Glândula Submandibular , Fator de Crescimento Transformador beta1 , Humanos , Aquaporina 5/genética , Aquaporina 5/metabolismo , Colágeno Tipo VII/metabolismo , Saliva/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
5.
J Cell Mol Med ; 27(6): 803-818, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36824022

RESUMO

The lens is transparent, non-vascular, elastic and wrapped in a transparent capsule. The lens oppacity of AQP5-/- mice was increased more than that of wild-type (AQP5+/+ ) mice. In this study, we explored the potential functional role of circular RNAs (circRNAs) and transcription factor HSF4 in lens opacity in aquaporin 5 (AQP5) knockout (AQP5-/- ) mice. Autophagy was impaired in the lens tissues of AQP5-/- mice. Autophagic lysosomes in lens epithelial cells of AQP5-/- mice were increased compared with AQP5+/+ mice, based on analysis by transmission electron microscopy. The genetic information of the mice lens was obtained by high-throughput sequencing, and then the downstream genes were analysed. A circRNA-miRNA-mRNA network related to lysosomal pathway was constructed by the bioinformatics analysis of the differentially expressed circRNAs. Based on the prediction of the TargetScan website and the validation by dual luciferase reporter assay and RNA immunoprecipitation-qPCR, we found that circRNA (Chr16: 33421321-33468183+) inhibited the function of HSF4 by sponging microRNA (miR-149-5p), and it downregulated the normal expression of lysosome-related mRNAs. The accumulation of autophagic lysosome may be one of the reasons for the abnormal development of the lens in AQP5-/- mice.


Assuntos
Cristalino , MicroRNAs , Animais , Camundongos , RNA Circular/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , MicroRNAs/genética , Cristalino/metabolismo , RNA Mensageiro/metabolismo
6.
J Transl Med ; 21(1): 361, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268950

RESUMO

BACKGROUND: Restoration of salivary gland function in Sjogren's syndrome (SS) is still a challenge. Dental pulp stem cells (DPSCs) derived exosomes had shown anti-inflammatory, anti-oxidative, immunomodulatory, and tissue function restorative abilities. However, the salivary gland function restoration potential of DPSCs-derived exosomes (DPSC-Exos) during SS has not been investigated yet. METHODS: DPSC-Exos was isolated by ultracentrifugation methods and characterized. Salivary gland epithelial cells (SGEC) were treated with interferon-gamma (IFN-γ) to mimic SS in vitro and cultured with or without DPSC-Exos. SGEC survival and aquaporin 5 (AQP5) expression were analyzed. mRNA sequencing and bioinformatics analysis were performed in IFN-γ vs. DPSC-Exos+ IFN-γ treated SGEC. Non-obese diabetic (NOD)/ltj female mice (SS model), were intravenously administered with DPSC-Exos, and salivary gland functions and SS pathogenicity were analyzed. Furthermore, the mRNA sequencing and bioinformatics predicted mechanism of the therapeutic effect of DPSC-Exos was further investigated both in vitro and in vivo using RT-qPCR, Western blot, immunohistochemistry, immunofluorescence, flowcytometry analysis. RESULTS: DPSC-Exos partially rescued IFN-γ triggered SGEC death. IFN-γ inhibited AQP5 expression in SGEC and DPSC-Exos reversed this effect. Transcriptome analysis showed GPER was the upregulated DEG in DPSC-Exos-treated SGEC with a positive correlation with salivary secretion-related DEGs. Pathway enrichment analysis revealed that DEGs were mainly attributed to estrogen 16 alpha-hydroxylase activity, extracellular exosome function, cAMP signaling, salivary secretion, and estrogen signaling. Intravenous injection of DPSC-Exos in NOD/ltj mice alleviated the SS syndrome as indicated by the increased salivary flow rate, attenuated glandular inflammation, and increased AQP5 expression. GPER was also upregulated in the salivary gland of DPSC-Exos-treated NOD/ltj mice compared with the PBS-treated NOD/ltj mice. IFN-γ+DPSC-Exos-treated SGEC showed higher expression of AQP5, p-PKA, cAMP, and intracellular Ca2+ levels compared with IFN-γ-treated SGEC. These effects were reversed by the inhibition of GPER. CONCLUSIONS: Our results showed that DPSC-Exos revitalize salivary gland epithelial cell function during SS via the GPER-mediated cAMP/PKA/CREB pathway suggesting the possible therapeutic potential of DPSC-Exos in SS-treatment.


Assuntos
Polpa Dentária , Exossomos , Glândulas Salivares , Síndrome de Sjogren , Humanos , Animais , Camundongos , Polpa Dentária/citologia , Células Cultivadas , Exossomos/metabolismo , Feminino , Camundongos Endogâmicos NOD , Interferon gama/farmacologia , Glândulas Salivares/citologia , Células Epiteliais/metabolismo , Síndrome de Sjogren/terapia
7.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586060

RESUMO

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Assuntos
Transtornos do Olfato , Síndrome de Sjogren , Camundongos , Humanos , Animais , Olfato , Mucosa Olfatória/metabolismo , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética , Aquaporina 5/metabolismo , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo
8.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902003

RESUMO

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Suor , Camundongos , Humanos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Suor/metabolismo , Sudorese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/metabolismo
9.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982432

RESUMO

Xerostomia, the subjective feeling of a dry mouth associated with dysfunction of the salivary glands, is mainly caused by radiation and chemotherapy, various systemic and autoimmune diseases, and drugs. As saliva plays numerous essential roles in oral and systemic health, xerostomia significantly reduces quality of life, but its prevalence is increasing. Salivation mainly depends on parasympathetic and sympathetic nerves, and the salivary glands responsible for this secretion move fluid unidirectionally through structural features such as the polarity of acinar cells. Saliva secretion is initiated by the binding of released neurotransmitters from nerves to specific G-protein-coupled receptors (GPCRs) on acinar cells. This signal induces two intracellular calcium (Ca2+) pathways (Ca2+ release from the endoplasmic reticulum and Ca2+ influx across the plasma membrane), and this increased intracellular Ca2+ concentration ([Ca2+]i) causes the translocation of the water channel aquaporin 5 (AQP5) to the apical membrane. Consequently, the GPCR-mediated increased [Ca2+]i in acinar cells promotes saliva secretion, and this saliva moves into the oral cavity through the ducts. In this review, we seek to elucidate the potential of GPCRs, the inositol 1,4,5-trisphosphate receptor (IP3R), store-operated Ca2+ entry (SOCE), and AQP5, which are essential for salivation, as cellular targets in the etiology of xerostomia.


Assuntos
Qualidade de Vida , Xerostomia , Humanos , Xerostomia/etiologia , Xerostomia/metabolismo , Glândulas Salivares/metabolismo , Saliva/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3235-3245, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37382007

RESUMO

Sj9gren's syndrome(SS) is an autoimmune disease with glandular dysfunction caused by the massive infiltration of the exocrine glands by lymphocytes. The pathogenesis of this disease is related to the chronic inflammatory response of the exocrine glands due to excessive activation of B cells and T cells. In addition to dry mouth and eyes, SS can also cause damage to other organs and systems in the human body, seriously affecting the quality of life of patients. Traditional Chinese medicine(TCM) has definite clinical efficacy in the treatment of SS as it can alleviate symptoms and regulate immune disorders without causing adverse reactions, demonstrating high safety. This paper reviews the current status of preclinical and clinical trials about the TCM treatment of SS in the past decade. TCM mainly mitigates SS symptoms such as dry mouth, dry eyes, dry skin, and joint pain and improves the prognosis and quality of life of patients by regulating the abnormally activated B cells and T cells, inhibiting the autoimmune response, restoring the balance between pro-inflammatory and anti-inflammatory cytokines, and reducing the pathological damage caused by immune complexes to exocrine glands and joints in SS patients.


Assuntos
Doenças Autoimunes , Síndrome de Sjogren , Xerostomia , Humanos , Síndrome de Sjogren/tratamento farmacológico , Medicina Tradicional Chinesa , Qualidade de Vida
11.
Int J Legal Med ; 136(1): 133-147, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34181078

RESUMO

The diagnosis of death due to violent asphyxiation may be challenging if external injuries are missing, and a typical acute emphysema (AE) "disappears" in pre-existing chronic emphysema (CE). Eighty-four autopsy cases were systematically investigated to identify a (histo-) morphological or immunohistochemical marker combination that enables the diagnosis of violent asphyxiation in cases with a pre-existing CE ("AE in CE"). The cases comprised four diagnostic groups, namely "AE", "CE", "acute and chronic emphysema (AE + CE)", and "no emphysema (NE)". Samples from all pulmonary lobes were investigated by conventional histological methods as well as with the immunohistochemical markers Aquaporin 5 (AQP-5) and Surfactant protein A1 (SP-A). Particular attention was paid to alveolar septum ends ("dead-ends") suspected as rupture spots, which were additionally analyzed by transmission electron microscopy. The findings in the four diagnostic groups were compared using multivariate analysis and 1-way ANOVA analysis. All morphological findings were found in all four groups. Based on histological and macroscopic findings, a multivariate analysis was able to predict the correct diagnosis "AE + CE" with a probability of 50%, and the diagnoses "AE" and "CE" with a probability of 86% each. Three types of "dead-ends" could be differentiated. One type ("fringed ends") was observed significantly more frequently in AE. The immunohistochemical markers AQP-5 and SP-A did not show significant differences among the examined groups. Though a reliable identification of AE in CE could not be achieved using the examined parameters, our findings suggest that considering many different findings from the macroscopical, histomorphological, and molecular level by multivariate analysis is an approach that should be followed.


Assuntos
Enfisema , Enfisema Pulmonar , Asfixia/patologia , Autopsia , Enfisema/metabolismo , Enfisema/patologia , Humanos , Pulmão/patologia , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/patologia
12.
ORL J Otorhinolaryngol Relat Spec ; 84(2): 139-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34551419

RESUMO

OBJECTIVE: Na+-K+-ATPase (NKA) is essential in maintaining cell permeability, reserving potential energy, and preventing cellular edema. Nevertheless, how NKA expression is altered and regulated in chronic rhinosinusitis with nasal polyps (CRSwNPs) remain uncertain. Therefore, the present study aimed to explore the expression and regulation of NKA in CRSwNP. METHODS: NKA immunolabeling was assessed by the immunohistochemistry method, NKA protein levels were detected with the Western blotting method, and mRNA levels of NKA and aquaporin-5 (AQP5) were assayed by real-time PCR in nasal tissues from CRSwNP and control subjects. The co-localization of NKA with inflammatory cells was evaluated by immunofluorescence staining. In addition, human nasal epithelial cells (HNECs) were cultured and stimulated using various stimulators to evaluate the regulation of NKA. RESULTS: We found significantly decreased NKA positive cells, NKA protein levels, and mRNA levels of NKA and AQP5 in nasal tissues from CRSwNP patients compared to control subjects, especially in eosinophilic CRSwNP. Furthermore, NKA mRNA levels in HNECs were downregulated by staphylococcal enterotoxin B (SEB), lipopolysaccharides (LPSs), inflammatory cytokine (IFN)-γ, IL-4, IL-13, and IL-1ß. CONCLUSION: NKA and AQP5 expressions were decreased in CRSwNP. NKA in HNECs could be suppressed by SEB, LPS, IFN-γ, IL-4, IL-13, and IL-1ß. Impairment of NKA may contribute to the genesis and development of CRSwNP via inducing AQP5 downregulation and edema.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Adenosina Trifosfatases/metabolismo , Doença Crônica , Células Epiteliais/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Pólipos Nasais/complicações , Pólipos Nasais/metabolismo , RNA Mensageiro/metabolismo , Rinite/metabolismo , Sinusite/metabolismo
13.
Medicina (Kaunas) ; 58(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295616

RESUMO

Background and Objectives: Aquaporins are a family of water channel proteins. In this study, the renal and intrapulmonary expression of aquaporin-5 (AQP5) was examined in forensic autopsy cases to evaluate it as a drowning marker and to differentiate between freshwater drowning and saltwater drowning. Materials and Methods: Cases were classified into three groups: freshwater drowning (FWD), saltwater drowning (SWD), and controls (CTR). Samples were obtained from forensic autopsies at less than 72 h postmortem (15 FWD cases, 15 SWD cases, and 17 other cases) and were subjected to histological and immunohistochemical investigations. Results: In FWD group, intrapulmonary AQP5 expression was significantly suppressed compared with SWD and CTR; there was no significant difference in AQP5 expression among the other two groups. The same differences in expression were also observed in the kidney. Conclusions: These observations suggest that AQP5 expression in alveolar cells was suppressed by hypotonic water to prevent hemodilution. Moreover, it is possible to hypothesize that in the kidney, with the appearance of hypo-osmotic plasma, AQP5 is hypo-expressed, as a vital reaction, to regulate the renal reabsorption of water. In conclusion, the analysis of renal and intrapulmonary AQP5 expression would be forensically useful for differentiation between FWD and SWD, or between FWD and death due to other causes.


Assuntos
Afogamento , Humanos , Aquaporina 5/metabolismo , Biomarcadores , Afogamento/diagnóstico , Patologia Legal , Água Doce , Água/metabolismo
14.
Bull Exp Biol Med ; 173(5): 623-627, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36210422

RESUMO

We studied the content of aquaporin-5 (AQP5) and epithelial sodium channel (ENaC) in rat lungs during the development of toxic pulmonary edema (TPE) caused by intoxication with phosgene and perfluoroisobutylene (1.5 LC50). The lung body weight index (LBI) was calculated and histological examination of the lung tissues was performed. Localization and expression of AQP5 and ENaC were determined by immunohistochemistry. Intoxication led to a significant (p<0.05) increase in LBI and histological changes typical of TPE 1 and 3 h after the exposure. In 1 and 3 h after phosgene intoxication, the AQP5 and ENaC content significantly (p<0.05) increased in comparison with the control. Similar changes in the AQP5 and ENaC content were observed 1 and 3 h after exposure to perfluoroisobutylene. It was hypothesized that AQP5 plays an important role in the formation of TPE caused by intoxication with acylating pulmonotoxicants. An increase in the content of ENaC can be considered as a compensatory reaction of the body aimed at clearance of the alveolar fluid.


Assuntos
Aquaporina 5 , Canais Epiteliais de Sódio , Fluorocarbonos , Fosgênio , Edema Pulmonar , Animais , Aquaporina 5/metabolismo , Canais Epiteliais de Sódio/metabolismo , Fluorocarbonos/toxicidade , Pulmão/metabolismo , Fosgênio/toxicidade , Alvéolos Pulmonares/metabolismo , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos
15.
FASEB J ; 34(2): 3379-3398, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922312

RESUMO

Aquaporin-5 (AQP5) plays a role in breast cancer cell migration. This study aimed to identify AQP5-targeting miRNAs and examine their effects on breast cancer cell migration through exosome-mediated delivery. Bioinformatic analyses identified miR-1226-3p, miR-19a-3p, and miR-19b-3p as putative regulators of AQP5 mRNA. Immunoblotting revealed a decrease of AQP5 protein abundance when each of these miRNAs was transfected into human breast cancer MDA-MB-231 cells. Quantitative real-time PCR demonstrated the reduction of AQP5 mRNA expression by the transfection of miR-1226-3p and a luciferase reporter assay revealed the reduction of AQP5 translation after the transfection of miR-19b-3p in MDA-MB-231 cells. Consistently, the transfection of each miRNA impeded cell migration. Pathway enrichment analyses showed that these three miRNAs regulate target genes, which were predominantly enriched in the gap junction pathway. For the efficient delivery of AQP5-targeting miRNAs to breast cancer cells, exosomes expressing both miRNAs and a peptide targeting interleukin-4 receptor, which is highly expressed in breast cancer cells, were bioengineered and their inhibitory effects on AQP5 protein expression and cell migration were demonstrated in MDA-MB-231 cells. Taken together, AQP5-regulating miRNAs are identified, which could be exploited for the inhibition of breast cancer cell migration via the exosome-mediated delivery.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Exossomos/metabolismo , MicroRNAs/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Feminino , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Células MCF-7 , MicroRNAs/genética , Oligopeptídeos/metabolismo
16.
Biol Pharm Bull ; 44(8): 1111-1119, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34135208

RESUMO

Pannexin 1 (PANX1) has been implicated in cancer emergence and progression. However, its roles in gastric cancer remain unclear. In the present study, the function and molecular mechanisms of PANX1 in gastric cancer were investigated in vitro. Two gastric cancer cell lines exhibiting low and high PANX1 expression (SNU-16 and HCG-27, respectively) were transfected using a PANX1-containing plasmid or PANX1 transcript-targeting short hairpin (sh)RNA. In addition, HCG-27 cells and PANX1-overexpressing SNU-16 cells were subjected to short interfering (si)RNA-mediated aquaporin 5 (AQP5) knockdown. In vitro cell migration (scratch) and transwell invasion assays were performed to evaluate the cell migratory and invasive abilities. Real-time fluorescence quantitative PCR was used to detect transcripts encoding epithelial-mesenchymal transition markers. Immunofluorescence and Western blotting were conducted to quantify corresponding proteins. In SNU-16 cells, PANX1 overexpression induced conversion from round (cobblestone-like) to elongated (spindle-like) morphologies and enhanced the cell migratory and invasive abilities. PANX1 knockdown had the opposite effect in HGC-27 cells. In PANX1-overexpressing SNU-16 cells, expression of SLUG, vimentin, and AQP5 was significantly upregulated, whereas expression of E-cadherin was downregulated. In HGC-27 cells, PANX1 knockdown showed the opposite effect. In both PANX1-overexpressing SNU-16 cells and untransfected HGC-27 cells, silencing of AQP5 expression significantly inhibited PANX1-induced upregulation of SLUG and vimentin expression, as well as downregulation of E-cadherin expression and enhanced migratory and invasive abilities. In summary, elevated PANX1 expression induces gastric cancer cell epithelial-mesenchymal transition and the associated promotion of migratory and invasive abilities by inducing expression of AQP5, which facilitates SLUG-mediated regulation of vimentin and E-cadherin expression.


Assuntos
Aquaporina 5/metabolismo , Conexinas/metabolismo , Células Epiteliais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Gástricas/metabolismo , Estômago , Antígenos CD/metabolismo , Aquaporina 5/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Conexinas/genética , Humanos , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno , Fatores de Transcrição da Família Snail/metabolismo , Estômago/patologia , Transfecção , Vimentina/metabolismo
17.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502121

RESUMO

Sjögren's syndrome (SS) is an exocrinopathy characterized by the hypofunction of salivary glands (SGs). Aquaporin-5 (AQP5); a water channel involved in saliva formation; is aberrantly distributed in SS SG acini and contributes to glandular dysfunction. We aimed to investigate the role of ezrin in AQP5 mislocalization in SS SGs. The AQP5-ezrin interaction was assessed by immunoprecipitation and proteome analysis and by proximity ligation assay in immortalized human SG cells. We demonstrated, for the first time, an interaction between ezrin and AQP5. A model of the complex was derived by computer modeling and in silico docking; suggesting that AQP5 interacts with the ezrin FERM-domain via its C-terminus. The interaction was also investigated in human minor salivary gland (hMSG) acini from SS patients (SICCA-SS); showing that AQP5-ezrin complexes were absent or mislocalized to the basolateral side of SG acini rather than the apical region compared to controls (SICCA-NS). Furthermore, in SICCA-SS hMSG acinar cells, ezrin immunoreactivity was decreased at the acinar apical region and higher at basal or lateral regions, accounting for altered AQP5-ezrin co-localization. Our data reveal that AQP5-ezrin interactions in human SGs could be involved in the regulation of AQP5 trafficking and may contribute to AQP5-altered localization in SS patients.


Assuntos
Aquaporina 5/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Sequência de Aminoácidos , Aquaporina 5/química , Proteínas de Transporte , Proteínas do Citoesqueleto/química , Humanos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Síndrome de Sjogren/patologia , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948259

RESUMO

Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, lacrimal, and submucosal glands. It is important for the secretory function of exocrine glands because mice with the knockout of AQP5 exhibit a significant reduction in secretion from these glands. Previous reports indicated that the AQP5 C-terminal domain is crucial for the localization of AQP5 at the plasma membrane, but it remains unclear which motif or amino acid residues in the C-terminal domain are essential for this. In this study, we examined the effects of various AQP5 C-terminal deletions or mutations on the expression of AQP5 on the cell surface. AQP5 C-terminal domain mutants did not localize on the plasma membrane, and Leu262 was shown to be crucial for AQP5's plasma membrane localization. The mutants localized in the autophagosome or lysosome and showed decreased protein stability via lysosomal degradation. Taking these findings together, our study suggests that the C-terminal domain is required for AQP5 to pass protein quality control and be trafficked to the plasma membrane.


Assuntos
Aquaporina 5/genética , Aquaporina 5/metabolismo , Transporte Proteico/genética , Animais , Células CHO , Membrana Celular/metabolismo , Cricetulus , Citoplasma/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos/genética , Deleção de Sequência/genética
19.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948308

RESUMO

Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, sweat, and submucosal airway glands, and plays important roles in maintaining their secretory functions. Because AQP5 is not regulated by gating, localization on the plasma membrane is important for its water-permeable function. Ezrin is an ezrin-radixin-moesin family protein that serves as a crosslinker between the plasma membrane and actin cytoskeleton network. It plays important roles in translocation of various membrane proteins to mediate vesicle trafficking to the plasma membrane. In this study, we examined the effects of ezrin inhibition on membrane trafficking of AQP5. Ezrin inhibition selectively suppressed an ionomycin-induced increase in AQP5 translocation to the plasma membrane of mouse lung epithelial cells (MLE-12) without affecting the steady-state level of plasma membrane AQP5. Taken together, our data suggest that AQP5 translocates to the plasma membrane through at least two pathways and that ezrin is selectively involved in a stimulation-dependent pathway.


Assuntos
Aquaporina 5/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Ionóforos/metabolismo , Transporte Proteico/fisiologia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo
20.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946369

RESUMO

Activity-dependent fluid secretion is the most important physiological function of salivary glands and is regulated via muscarinic receptor signaling. Lipid rafts are important for G-protein coupled receptor (GPCR) signaling and ion channels in plasma membranes. However, it is not well understood whether lipid raft disruption affects all membrane events or only specific functions in muscarinic receptor-mediated water secretion in salivary gland cells. We investigated the effects of lipid raft disruption on the major membrane events of muscarinic transcellular water movement in human salivary gland (HSG) cells. We found that incubation with methyl-ß-cyclodextrin (MßCD), which depletes lipid rafts, inhibited muscarinic receptor-mediated Ca2+ signaling in HSG cells and isolated mouse submandibular acinar cells. However, MßCD did not inhibit a Ca2+ increase induced by thapsigargin, which activates store-operated Ca2+ entry (SOCE). Interestingly, MßCD increased the activity of the large-conductance Ca2+-activated K+ channel (BK channel). Finally, we found that MßCD did not directly affect the translocation of aquaporin-5 (AQP5) into the plasma membrane. Our results suggest that lipid rafts maintain muscarinic Ca2+ signaling at the receptor level without directly affecting the activation of SOCE induced by intracellular Ca2+ pool depletion or the translocation of AQP5 into the plasma membrane.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Microdomínios da Membrana/metabolismo , Receptores Muscarínicos/metabolismo , Glândulas Salivares/metabolismo , Linhagem Celular , Humanos , Glândulas Salivares/citologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa