Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Fish Dis ; 47(6): e13938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462942

RESUMO

Channel catfish (Ictalurus punctatus) are a food fish extensively reared in aquaculture facilities throughout the world and are also among the most abundant wild catfish species in North America, making them a popular target of anglers. Furthermore, channel catfish are important members of aquatic ecosystems; for example, they serve as a glochidial host for the endangered winged mapleleaf mussel (Quadrula fragosa), making them critical for conserving this species through hatchery-based restoration efforts. During a routine health inspection, a novel aquareovirus was isolated from channel catfish used in mussel propagation efforts at a fish hatchery in Wisconsin. This virus was isolated on brown bullhead cells (ATCC CCL-59) and identified through metagenomic sequencing as a novel member of the family Spinareoviridae, genus Aquareovirus. The virus genome consists of 11 segments, as is typical of the aquareoviruses, with phylogenetic relationships based on RNA-dependent RNA polymerase and major outer capsid protein amino acid sequences showing it to be most closely related to golden shiner virus (aquareovirus C) and aquareovirus C/American grass carp reovirus (aquareovirus G) respectively. The potential of the new virus, which we name genictpun virus 1 (GNIPV-1), to cause disease in channel catfish or other species remains unknown.


Assuntos
Doenças dos Peixes , Genoma Viral , Ictaluridae , Filogenia , Animais , Ictaluridae/virologia , Wisconsin , Doenças dos Peixes/virologia , Reoviridae/isolamento & purificação , Reoviridae/genética , Reoviridae/classificação , Reoviridae/fisiologia , Bivalves/virologia , Aquicultura
2.
J Gen Virol ; 101(2): 145-155, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31859614

RESUMO

Elevation of heat-shock protein expression, known as cellular heat-shock responses, occurs during infection of many viruses, which is involved in viral replication through various mechanisms. Herein, transcriptome analysis revealed that over-expression of non-structural protein NS31 of grass carp reovirus (GCRV) in grass carp Ctenopharyngodon idellus kidney (CIK) cells specifically induced expression of heat-shock response (HSR) genes HSP30 and HSP70. We further found that, among the HSR genes, only HSP70 protein were shown to be efficiently induced in fish cells following NS31 over-expression or GCRV infection. Employing a luciferase assay, we were able to show that the promoter of the HSP70 gene can be specifically activated by NS31. In addition, over-expressing HSP70 in grass carp CIK cells resulted in enhanced replication efficiency of GCRV, and an inhibitor for HSP70 resulted in the inhibition of GCRV replication, indicating that HSP70 should serve as a pro-viral factor. We also found that NS31 could activate HSP70 expression in cells of other vertebrate animals. Similar inducing effect on HSP70 expression was demonstrated for NS31-homologue proteins of other aquareoviruses including American grass carp reovirus (AGCRV) and GRCV (green river chinook virus). All these results indicated NS31 proteins in the Aquareovirus genus should play a key role for up-regulating specific HSP70 gene during viral replication.


Assuntos
Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae , Proteínas não Estruturais Virais , Animais , Carpas , Células Epiteliais/virologia , Proteínas de Peixes/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Rim/citologia , Rim/virologia , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
3.
J Gen Virol ; 100(3): 369-379, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30688636

RESUMO

Aquareovirus is a genus of viruses in family Reoviridae, subfamily Spinareovirinae, members of which infect fish, shellfish and crustaceans. Grass carp reovirus (GCRV), a genotype 1 reovirus isolated from grass carp, has served as a model strain for investigating aquareovirus-host interactions. Herein, we report a neglected open reading frame (ORF), tentatively named NS12, residing between NS16 and NS31 in segment 7 (S7) of the virus genome. With an additional reading frame, the nucleotide sequence of NS12 partially overlaps with the 3' expressible nucleotide sequence of NS16. NS12 is not a pseudogene during virus replication, as confirmed in fish cells infected with GCRV and based on amino acid sequence analysis and protein expression pattern. Bioinformatics analysis indicated that NS12 is a transmembrane protein, which was confirmed by its exclusive presence in the membrane-associated fraction of the cell lysate. However, unlike fusion protein NS16, NS12 alone could not induce visible syncytium formation in fish cells. Thus, NS12 is functionally distinct from known aquareovirus membrane-associated protein NS16. NS12-like ORFs (with an AUG or non-AUG initiator codon) are also present in the S7 segment of other aquareoviruses, suggesting that NS12 homologues may be widely distributed in the genus Aquareovirus.


Assuntos
Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae/metabolismo , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/virologia , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Reoviridae/classificação , Reoviridae/genética , Reoviridae/isolamento & purificação , Infecções por Reoviridae/virologia , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
4.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068643

RESUMO

Reoviruses carry out genomic RNA transcription within intact viruses to synthesize plus-sense RNA strands, which are capped prior to their release as mRNA. The in situ structures of the transcriptional enzyme complex (TEC) containing the RNA-dependent RNA polymerase (RdRp) and NTPase are known for the single-layered reovirus cytoplasmic polyhedrosis virus (CPV), but not for multilayered reoviruses, such as aquareoviruses (ARV), which possess a primed stage that CPV lacks. Consequently, how the RNA genome and TEC respond to priming in reoviruses is unknown. Here, we determined the near-atomic-resolution asymmetric structure of ARV in the primed state by cryo-electron microscopy (cryo-EM), revealing the in situ structures of 11 TECs inside each capsid and their interactions with the 11 surrounding double-stranded RNA (dsRNA) genome segments and with the 120 enclosing capsid shell protein (CSP) VP3 subunits. The RdRp VP2 and the NTPase VP4 associate with each other and with capsid vertices; both bind RNA in multiple locations, including a novel C-terminal domain of VP4. Structural comparison between the primed and quiescent states showed translocation of the dsRNA end from the NTPase to the RdRp during priming. The RNA template channel was open in both states, suggesting that channel blocking is not a regulating mechanism between these states in ARV. Instead, the NTPase C-terminal domain appears to regulate RNA translocation between the quiescent and primed states. Taking the data together, dsRNA viruses appear to have adapted divergent mechanisms to regulate genome transcription while retaining similar mechanisms to coassemble their genome segments, TEC, and capsid proteins into infectious virions.IMPORTANCE Viruses in the family Reoviridae are characterized by the ability to endogenously synthesize nascent RNA within the virus. However, the mechanisms for assembling their RNA genomes with transcriptional enzymes into a multilayered virion and for priming such a virion for transcription are poorly understood. By cryo-EM and novel asymmetric reconstruction, we determined the atomic structure of the transcription complex inside aquareoviruses (ARV) that are primed for infection. The transcription complex is anchored by the N-terminal segments of enclosing capsid proteins and contains an NTPase and a polymerase. The NTPase has a newly discovered domain that translocates the 5' end of plus-sense RNA in segmented dsRNA genomes from the NTPase to polymerase VP2 when the virus changes from the inactive (quiescent) to the primed state. Conformation changes in capsid proteins and transcriptional complexes suggest a mechanism for relaying information from the outside to the inside of the virus during priming.


Assuntos
Genoma Viral/genética , RNA Viral/genética , Reoviridae/metabolismo , Reoviridae/ultraestrutura , Transcrição Gênica/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Nucleosídeo-Trifosfatase/metabolismo , Domínios Proteicos/genética , Estrutura Secundária de Proteína/genética , RNA Mensageiro/genética
5.
J Fish Dis ; 42(3): 345-355, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30632177

RESUMO

In Taiwan, a petechial haemorrhage disease associated with mortality has affected marbled eels (Anguilla marmorata). The eels were revealed to be infected with adomavirus (MEAdoV, previously recognized as a polyoma-like virus). In this study, cell line DMEPF-5 was established from the pectoral fin of a diseased eel. DMEPF-5 was passaged >70 times and thoroughly proliferated in L-15 medium containing 2%-15% foetal bovine serum at 20-30°C. Transcripts of neural cell adhesion molecule 1 and nestin genes, and nucleic acids of MEAdoV and a novel reovirus (MERV) in the cells were demonstrated by reverse transcription-polymerase chain reaction analysis. Phylogenetic analysis revealed that the AdoV LO8 proteins mostly relate to adenovirus adenain, whereas MERV is close to American grass carp reovirus in Aquareovirus G, based on a partial VP2 nucleotide sequence. DMEPF-5 cells are susceptible to additional viral infection. Taken together, the marbled eels with the haemorrhagic disease have coinfection with MEAdoV and MERV, and the pathogenic role of MEAdoV and MERV warrants research. DMEPF-5 has gene expression associated with mesenchymal stem and progenitor cells and is the first cell line persistently infected with adomavirus and aquareovirus. DMEPF-5 can facilitate studies of such viruses and haemorrhagic disease.


Assuntos
Anguilla , Linhagem Celular/virologia , Doenças dos Peixes/virologia , Infecções por Polyomavirus/veterinária , Infecções por Reoviridae/veterinária , Sequência de Aminoácidos , Nadadeiras de Animais/citologia , Nadadeiras de Animais/virologia , Animais , Sequência de Bases , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Polyomavirus/genética , Infecções por Polyomavirus/virologia , Púrpura/veterinária , Púrpura/virologia , Reoviridae/genética , Infecções por Reoviridae/virologia , Pele/patologia , Pele/virologia
6.
Dis Aquat Organ ; 130(2): 95-108, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198485

RESUMO

The fountain darter Etheostoma fonticola (FOD) is a federally endangered fish listed under the US Endangered Species Act. Here, we identified and characterized a novel aquareovirus isolated from wild fountain darters inhabiting the San Marcos River. This virus was propagated in Chinook salmon embryo (CHSE)-214, rainbow trout gonad-2 and fathead minnow cells at 15°C. The epithelioma papulosum cyprini cell line was refractory at all temperatures evaluated. High throughput sequencing technologies facilitated the complete genome sequencing of this virus utilizing ribosomal RNA-depleted RNA extracted from infected CHSE-214 cells. Conventional PCR primer sets were developed for the detection and confirmation of this virus to assist diagnostic screening methods. Phylogenetic analysis suggests this virus belongs to the Aquareovirus A genus. This research provides requisite initial data critical to support hatchery and refugia biosecurity measures for this endangered species.


Assuntos
Percas , Filogenia , Reoviridae , Animais , Espécies em Perigo de Extinção , Percas/virologia , Reoviridae/genética , Reoviridae/isolamento & purificação , Rios
7.
Virol J ; 14(1): 170, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28870221

RESUMO

BACKGROUND: Salmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae. METHODS: The virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3' RACE. RESULTS: The genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells. CONCLUSIONS: This sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.


Assuntos
Doenças dos Peixes/virologia , Genoma Viral , RNA Viral/genética , Reoviridae/genética , Reoviridae/isolamento & purificação , Salmão/virologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular , Doenças dos Peixes/patologia , Metagenômica , Filogenia , RNA de Cadeia Dupla/genética , Reação em Cadeia da Polimerase em Tempo Real , Reoviridae/classificação , Reoviridae/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
8.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135940

RESUMO

Grass carp (Ctenopharyngodon idellus) is an important worldwide commercial freshwater culture species. However, grass carp reovirus (GCRV) causes serious hemorrhagic disease in fingerlings and yearlings of fishes. To understand the molecular pathogenesis of host cells during GCRV infection, intensive proteomic quantification analysis of lysine acetylation in Ctenopharyngodon idella kidney (CIK) cells was performed. Using dimethylation labeling-based quantitative proteomics, 832 acetylated proteins with 1391 lysine acetylation sites were identified in response to GCRV infection, among which 792 proteins with 1323 sites were quantifiable. Bioinformatics analysis showed that differentially expressed lysine acetylated proteins are involved in diverse cellular processes and associated with multifarious functions, suggesting that extensive intracellular activities were changed upon viral infection. In addition, extensive alterations on host-protein interactions at the lysine acetylation level were also detected. Further biological experiments showed that the histone deacetylases (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) could significantly suppress the GCRV replication. To our knowledge, this is the first to reveal the proteome-wide changes in host cell acetylome with aquatic virus infection. The results provided in this study laid a basis for further understanding the host response to aquareovirus infection in the post-translational modification aspect by regulating cell lysine acetylation conducive to viral replication.


Assuntos
Carpas/fisiologia , Células Matadoras Induzidas por Citocinas/metabolismo , Células Matadoras Induzidas por Citocinas/virologia , Doenças dos Peixes/virologia , Lisina/metabolismo , Proteômica , Reoviridae/fisiologia , Acetilação , Motivos de Aminoácidos , Animais , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Linhagem Celular , Análise por Conglomerados , Células Matadoras Induzidas por Citocinas/efeitos dos fármacos , Doenças dos Peixes/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Ontologia Genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Nitrobenzenos , Domínios Proteicos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirazolonas , Frações Subcelulares/metabolismo , Replicação Viral/efeitos dos fármacos , Vorinostat
9.
J Immunoassay Immunochem ; 37(4): 376-89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26889962

RESUMO

Monoclonal antibodies (mAbs) play an important role in detection of aquareoviruses. Three mAbs against grass carp reovirus (GCRV) were prepared. Isotyping revealed that all three mAbs were of subclass IgG2b. Western blot assay showed that all three mAbs reacted with GCRV 69 kDa protein (the putative VP5). In addition to the 69 kDa protein of GCRV, mAb 4B6 also recognize a 54 kDa protein. All three mAbs were used for detecting aquareovirus by Western blot assay and indirect immunofluorescence assay (IFA). All of them reacted with GCRV, and mAb 4A3 could also react with turbot Scophthalmus maximus reovirus (SMReV) and largemouth bass Microptererus salmonides reovirus (MsReV). Viral antigens were only observed in the cytoplasm of infected cells. Finally, syncytia formation was observed with light microscopy and fluorescence microscopy using fluorescein labelled 4A3 mAb at various times post-infection. Syncytia were observed at 36 hr post-infection (hpi) by light microscopy and at 12 hpi by fluorescence microscopy. The immunofluorescence based assay allowed earlier detection of virus than observation of virus-induced cytopathic effect (CPE) assay in inoculated cell cultures. The sensitivity and specificity of these mAbs may be useful for diagnosis and monitoring of aquareoviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos Virais/análise , Antígenos Virais/imunologia , Reoviridae/imunologia , Reoviridae/isolamento & purificação , Western Blotting , Técnica Indireta de Fluorescência para Anticorpo
10.
Front Microbiol ; 14: 1269164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029205

RESUMO

Introduction: Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered to be the most pathogenic aquareovirus. Productive viral infection requires extensive interactions between viruses and host cells. However, the molecular mechanisms underlying GCRV early infection remains elusive. Methods: In this study we performed transcriptome and DNA methylome analyses with Ctenopharyngodon idellus kidney (CIK) cells infected with GCRV at 0, 4, and 8 h post infection (hpi), respectively. Results: We found that at early infection stage the differentially expressed genes related to defense response and immune response in CIK cells are activated. Although DNA methylation pattern of CIK cells 8 hpi is similar to mock-infected cells, we identified a considerable number of genes that selectively utilize alternative polyadenylation sites. Particularly, we found that biological processes of cytoskeleton organization and regulation of microtubule polymerization are statistically enriched in the genes with altered 3'UTRs. Discussion: Our results suggest that alternative polyadenylation potentially contributes to GCRV early infection.

11.
Virus Res ; 334: 199150, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302658

RESUMO

Fusion-associated small transmembrane (FAST) proteins can promote cell fusion, alter membrane permeability and trigger apoptosis to promote virus proliferation in orthoreoviruses. However, it is unknown whether FAST proteins perform these functions in aquareoviruses (AqRVs). Non-structural protein 17 (NS17) carried by grass carp reovirus Honghu strain (GCRV-HH196) belongs to the FAST protein family, and we preliminarily explored its relevance to virus infection. NS17 has similar domains to FAST protein NS16 of GCRV-873, comprising a transmembrane domain, a polybasic cluster, a hydrophobic patch and a polyproline motif. It was observed in the cytoplasm and the cell membrane. Overexpression of NS17 enhanced the efficiency of cell-cell fusion induced by GCRV-HH196 and promoted virus replication. Overexpression of NS17 also led to DNA fragmentation and reactive oxygen species (ROS) accumulation, and it triggered apoptosis. The findings illuminate the functions of NS17 in GCRV infection, and provide a reference for the development of novel antiviral strategies.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Viroses , Animais , Infecções por Reoviridae/genética , Fusão Celular , Reoviridae/genética , Reoviridae/metabolismo , Apoptose
12.
Viruses ; 14(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632773

RESUMO

Aquareovirus, which is a member of the Reoviridae family, was isolated from aquatic animals. A close molecular evolutionary relationship between aquareoviruses and mammalian orthoreoviruses was revealed. However, the functions of the aquareovirus genome-encoded proteins are poorly understood. We investigated the molecular characteristics of the outer capsid proteins, namely, VP5 and VP7, of grass carp reovirus (GCRV). The peptides VP5 and VP7 were determined using in-gel tryptic digestion and mass spectrometry. Recovered peptides represented 76% and 66% of the full-length VP5 and VP7 sequences, respectively. Significantly, two-lysine acetylation, as well as two-serine and two-threonine phosphorylation modifications, were first revealed in VP5. We found that the initial amino acid in VP5 was Pro43, suggesting that a lower amount of VP5 remained uncleaved in virions at the autocleavage site (Asn42-Pro43). Further biochemical evidence showed that the cleaved VP5N/VP5C conformation was the major constituent of the particles. Moreover, early cleavage fragments of VP7 and enhanced infectivity were detected after limited tryptic digestion of GCRV, indicating that stepwise VP7 cleavage is essential for VP5 conformational rearrangement. Our results provide insights into the roles of posttranslational modifications in VP5 and its association with VP7 in the viral life cycle.


Assuntos
Carpas , Orthoreovirus , Reoviridae , Animais , Anticorpos Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Carpas/metabolismo , Mamíferos , Vírion/metabolismo
13.
Virology ; 559: 120-130, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865075

RESUMO

We isolated a novel Aquareovirus (hirame aquareovirus: HAqRV) from Japanese flounder Paralichthys olivaceus suffering from reovirus-like infection. In electron microscopy, the spherical virion (75 nm in diameter) was observed with multi-layered capsid structure. The viral genome consisted of 11 segments and regions encoding 7 virion structural proteins and 5 non-structural proteins were predicted. The deduced amino acid sequences of those proteins were highly similar to those of the aquareoviruses. However, the similarity of complete genome sequence between the HAqRV and other aquareoviruses was less than 60%. Phylogenetic analyses based on the deduced amino acid sequences suggested that the HAqRV is not classified into the known species of Aquareovirus. Pathogenicity of HAqRV was clearly demonstrated in accordance with Koch's postulates by experimental infection using Japanese flounder. The results suggest that the HAqRV is a new Aquareovirus species which is highly virulent for the Japanese flounder at early life stages.


Assuntos
Linguado/virologia , Genoma Viral , Filogenia , Reoviridae/classificação , Reoviridae/genética , Animais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Linhagem Celular , Células Gigantes/virologia , Hepatócitos/patologia , Hepatócitos/virologia , Reoviridae/isolamento & purificação , Reoviridae/patogenicidade , Vírion/genética , Sequenciamento Completo do Genoma
14.
Viruses ; 13(2)2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668598

RESUMO

RNAs with methylated cap structures are present throughout multiple domains of life. Given that cap structures play a myriad of important roles beyond translation, such as stability and immune recognition, it is not surprising that viruses have adopted RNA capping processes for their own benefit throughout co-evolution with their hosts. In fact, that RNAs are capped was first discovered in a member of the Spinareovirinae family, Cypovirus, before these findings were translated to other domains of life. This review revisits long-past knowledge and recent studies on RNA capping among members of Spinareovirinae to help elucidate the perplex processes of RNA capping and functions of RNA cap structures during Spinareovirinae infection. The review brings to light the many uncertainties that remain about the precise capping status, enzymes that facilitate specific steps of capping, and the functions of RNA caps during Spinareovirinae replication.


Assuntos
Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Infecções por Reoviridae/virologia , Reoviridae/genética , Animais , Humanos , Capuzes de RNA/química , Capuzes de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Viral/química , RNA Viral/genética , Reoviridae/química , Reoviridae/metabolismo
15.
Virol Sin ; 35(2): 200-211, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31858455

RESUMO

Grass carp reovirus (GCRV), the genus Aquareovirus in family Reoviridae, is viewed as the most pathogenic aquareovirus. To understand the molecular mechanism of how aquareovirus initiates productive infection, the roles of endosome and microtubule in cell entry of GCRV are investigated by using quantum dots (QDs)-tracking in combination with biochemical approaches. We found that GCRV infection and viral protein synthesis were significantly inhibited by pretreating host cells with endosome acidification inhibitors NH4Cl, chloroquine and bafilomycin A1 (Bafi). Confocal images indicated that GCRV particles could colocalize with Rab5, Rab7 and lysosomes in host cells. Further ultrastructural examination validated that viral particle was found in late endosomes. Moreover, disruption of microtubules with nocodazole clearly blocked GCRV entry, while no inhibitory effects were observed with cytochalasin D treated cells in viral infection, hinting that intracellular transportation of endocytic uptake in GCRV infected cells is via microtubules but not actin filament. Notably, viral particles were observed to transport along microtubules by using QD-labeled GCRV. Altogether, our results suggest that GCRV can use endosomes and microtubules to initiate productive infection.


Assuntos
Carpas/virologia , Endossomos/virologia , Microtúbulos/virologia , Infecções por Reoviridae/veterinária , Reoviridae/patogenicidade , Internalização do Vírus , Animais , Linhagem Celular , Sistemas Computacionais , Endossomos/fisiologia , Doenças dos Peixes/virologia , Rim/citologia , Microtúbulos/fisiologia , Pontos Quânticos , Infecções por Reoviridae/virologia
16.
Virology ; 529: 216-225, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30735905

RESUMO

Aquareoviruses contain an 11-segmented double-stranded RNA genome. Previous studies indicated that NS38, a virus-encoded putative single-stranded RNA binding protein, interacts with NS80 in viral inclusion bodies (VIBs). However, the role of NS38 in aquareovirus infection remained unclear. Here, we found that NS38 interacts with inner-capsid proteins (VP1-VP4 and VP6) and the NS80-RNA complex in both transfected and infected cells. Knockdown of NS38 by siRNAs-115/219 clearly reduced viral infection, with decreased mRNA and protein yields. Moreover, NS38 can interact with host cellular eukaryotic translation initiation factor 3 subunit A (eIF3A) in transfected cells, while no association was detected between eIF3A and NS80. This study is the first to define that the NS38 is essential to viral replication. Together, our findings indicate that NS38 might function as a mediator by interacting with viral and host cellular components in VIBs during replication.


Assuntos
Fator de Iniciação 3 em Eucariotos/fisiologia , Reoviridae/fisiologia , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Chlorocebus aethiops , Fator de Iniciação 3 em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células Vero , Proteínas não Estruturais Virais/genética
17.
Virology ; 513: 195-207, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102889

RESUMO

Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered the most pathogenic aquareovirus. However, its productive viral entry pathways remain largely unclear. Using a combination of quantum dot (QD)-based live-virus tracking and biochemical assays, we found that extraction of cellular membrane cholesterol with methyl-ß-cyclodextrin (MßCD) and nystatin strongly inhibited the internalization of GCRVs, and supplementation with cholesterol restored viral infection. In addition, the entry of the virus was restrained by genistein, an inhibitor known to block caveolar endocytosis. Subsequent real-time tracking experiments revealed that the QD-labeled GCRV particles were colocalized with caveolin-1, and transfection of cells with dominant-negative mutant (caveolin-1 Y14F) significantly reduced GCRV infection. In contrast, no effects on virus infection were detected when the clathrin-mediated endocytosis or the macropinocytosis inhibitors were used. Our results collectively suggest that aquareoviruses can use caveolae/raft-mediated endocytosis as the primary entry pathway to initiate productive infection.


Assuntos
Endocitose , Reoviridae/fisiologia , Internalização do Vírus , Animais , Carpas , Linhagem Celular
18.
Virol Sin ; 31(4): 314-23, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27279144

RESUMO

Aquareovirus species vary with respect to pathogenicity, and the nonstructural protein NS80 of aquareoviruses has been implicated in the regulation of viral replication and assembly, which can form viral inclusion bodies (VIBs) and recruit viral proteins to its VIBs in infected cells. NS80 consists of 742 amino acids with a molecular weight of approximately 80 kDa. Interestingly, a short specific fragment of NS80 has also been detected in infected cells. In this study, an approximately 58-kDa product of NS80 was confirmed in various infected and transfected cells by immunoblotting analyses using α-NS80C. Mutational analysis and time course expression assays indicated that the accumulation of the 58-kDa fragment was related to time and infection dose, suggesting that the fragment is not a transient intermediate of protein degradation. Moreover, another smaller fragment with a molecular mass of approximately 22 kDa was observed in transfected and infected cells by immunoblotting with a specific anti-FLAG monoclonal antibody or α-NS80N, indicating that the 58- kDa polypeptide is derived from a specific cleavage site near the amino terminus of NS80. Additionally, different subcellular localization patterns were observed for the 22-kDa and 58-kDa fragments in an immunofluorescence analysis, implying that the two cleavage fragments of NS80 function differently in the viral life cycle. These results provide a basis for additional studies of the role of NS80 played in replication and particle assembly of the Aquareovirus.


Assuntos
Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Animais , Carpas , Linhagem Celular , Processamento de Proteína Pós-Traducional , Transporte Proteico , Reoviridae/química , Reoviridae/genética , Infecções por Reoviridae/virologia , Proteínas não Estruturais Virais/genética
19.
Viruses ; 7(8): 4282-302, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26247954

RESUMO

Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1-S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.


Assuntos
Bass/virologia , Doenças dos Peixes/virologia , Genoma Viral , RNA Viral/genética , Reoviridae/genética , Animais , Análise por Conglomerados , Ordem dos Genes , Variação Genética , Dados de Sequência Molecular , Filogenia , Reoviridae/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Sintenia , Proteínas Virais/genética
20.
Prev Vet Med ; 116(1-2): 214-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25049086

RESUMO

Atlantic salmon reovirus (TSRV) has been consistently isolated from Atlantic salmon in Tasmania, since first identification in 1990 under the Tasmanian Salmonid Health Surveillance Program (TSHSP). The distribution and prevalence of TSRV was identified using TSHSP data. A data set of 730 fish submissions tested over a period of 15 years was reviewed and analysed to describe the spatial and temporal variation of TSRV in Tasmanian salmonid aquaculture production units. The virus was present throughout Tasmania with the highest reported prevalence of the virus in the south-east region of Tasmania.


Assuntos
Doenças dos Peixes/epidemiologia , Infecções por Reoviridae/veterinária , Salmo salar , Animais , Aquicultura , Doenças dos Peixes/virologia , Prevalência , Reoviridae/fisiologia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Estudos Retrospectivos , Tasmânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa