Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Ecotoxicology ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992211

RESUMO

We experimentally tested the effects of different concentrations of cigarette butt leachate on freshwater phytoplankton chlorophyll-a, species richness, cell density, and community composition. For this, we sampled the phytoplankton from a eutrophic lake and acclimated it for 24 h in microcosms. We then conducted the experiment in microcosms maintained for 96 h. The experiment consisted of four treatments: control and leachate from 1 butt L-1 (T1), 5 butts L-1 (T5), and 10 butts L-1 (T10), which were prepared by diluting a stock solution of leachate from 50 butts L-1. We found that algal chlorophyll-a content was not affected by different leachate concentrations. In contrast, phytoplankton cell density decreased in a dose-dependent manner as concentrations of the leachate increased. Similarly, the number of species was highest in the control group relative to all other treatments, with T1 and T5 showing higher species richness than T10. Additionally, the exposition to different concentrations of the leachate impacted community composition across all treatments in comparison to the control group. Our results suggest that cigarette butt leachate alters the number of cells and species, as well as the distribution of abundance, without necessarily reducing chlorophyll-a concentrations. Our findings indicate that to gain a comprehensive understanding of the effects of cigarette butt leachate on freshwater ecosystems, it is essential to evaluate more realistic scenarios that incorporate aquatic communities, rather than isolated species.

2.
BMC Plant Biol ; 23(1): 596, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017375

RESUMO

Luronium natans (L.) Raf. is a European endemic species and is becoming increasingly rare and endangered in most countries. This study aimed to compare the community structure and environmental conditions of shallow and deep-water habitats of Luronium, and related anthropogenic influences. A total of 21 Luronium lake habitats were surveyed at Pomerania Lakeland (NW Poland). Luronium occurs mainly with other isoetids, as well as bryophytes, specifically Sphagnum denticulatum. It can also be found in oligotrophic lakes at a depth of 1.0 ± 0.6 m and in water with a large pH range (4.52 - 8.76), as well having a low conductivity (38.3 ± 20.9 µS cm-1; 19.0 - 106.1) and calcium concentration (3.9 ± 2.4 mg dm-3; 1.6 - 11,7).The largest Luronium cover occurs at a depth of 1.5 m (44.8 ± 35.3%), but occasionally as deep as 3.5 m. In the depth gradient, the structure of underwater vegetation and environmental conditions exhibit obvious changes, which presents a clear distinction between shallow and deep-water habitats of Luronium. The differences mainly pertain to the abundances of Isoëtes lacustris and Elodea canadensis in the community, as well as environmental factors, such as water calcium, nitrogen and phosphorus concentrations, PAR, conductivity, and water color.Compared to other isoetids, Luronium usually occurs in habitats with intermediate features, which are characterized by values between the typical, but deep-water, Isoëtes and shallow water Lobelia and Littorella. However, Luronium clearly prefers waters with higher temperatures (23.8 ± 2.7 °C), which are thus less oxygenated (96.6 ± 20.0%). In terms of pH, conductivity, and calcium concentration, Luronium occurs in waters having slightly lower values compared to other isoetids. Therefore, Luronium is a species that significantly expands the diversity of habitat number 3110 in the Natura 2000 network. Therefore, it can be considered as an indicator species of lobelia lakes.An increased anthropogenic pressure primarily results in an increased water conductivity and a decreased water transparency. Consequently, Luronium increasingly inhabits shallower waters that are more oxygenated. Moreover, Luronium abundance is decreasing, while the abundances of species comprising underwater communities are also decreasing, e.g., S. denticulatum and I. lacustris, with a concurrent increase in Myriophyllum alterniflorum and E. canadensis cover.


Assuntos
Efeitos Antropogênicos , Traqueófitas , Cálcio , Ecossistema , Lagos/química , Plantas , Água
3.
J Environ Manage ; 305: 114366, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974214

RESUMO

With small cascade hydropower projects (SCHPs) increasingly employed in small and medium rivers, methods to assess changes in health status within the stream system have become essential to river ecological environment management. In this study, we used a cloud based fuzzy evaluation method to synthetically diagnose the health status of a stream, both as a whole and its parts (hydrological regime, riparian landscape, aquatic community, water quality, and social demand), under the impacts of SCHPs. The results indicated that: (1) average maximum and minimum flows decreased by 20% and 10% respectively, since SCHPs were implemented. Furthermore, the 38% increase in low flow frequency indicated that SCHPs might amplify droughts, the opposite of large hydropower projects which have been shown to alleviate drought; (2) implementation of SCHPs enhanced heterogeneity and fragmentation in riparian landscapes and decreased diversity of riparian vegetation, and dominant species were more likely to emerge on the upstream side of dam; (3) diversity of phytoplankton, zooplankton, and benthic animals decreased by 14%, 4%, and 16%, respectively, during high-impact period (HIP); and fish species decreased by 26% with a shift from rapid flow adapted to lentic and slow flow adapted species; and (4) the stream still exhibited a healthy state during HIP, but the degree of certainty belonging to "healthy" decreased from 0.279 to 0.192, indicating that the stream health was nearing a deteriorated state. This evaluation model clarified imperceptible and fuzzy changes in stream health which will be helpful in follow-up management decisions.


Assuntos
Ecossistema , Rios , Animais , Secas , Monitoramento Ambiental , Peixes , Hidrologia
4.
Mol Ecol ; 30(20): 4970-4990, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33594756

RESUMO

Genetic diversity underpins species conservation and management goals, and ultimately determines a species' ability to adapt. Using freshwater environmental DNA (eDNA) samples, we examined mitochondrial genetic diversity using multigene metabarcode sequence data from four Oncorhynchus species across 16 sites in Oregon and northern California. Our multigene metabarcode panel included targets commonly used in population genetic NADH dehydrogenase 2 (ND2), phylogenetic cytochrome c oxidase subunit 1 (COI) and eDNA (12S ribosomal DNA) screening. The ND2 locus showed the greatest within-species haplotype diversity for all species, followed by COI and then 12S rDNA for all species except Oncorhynchus kisutch. Sequences recovered for O. clarkii clarkii were either identical to, or one mutation different from, previously characterized haplotypes (95.3% and 4.5% of reads, respectively). The greatest diversity in O. c. clarkii was among coastal watersheds, and subsets of this diversity were shared with fish in inland watersheds. However, coastal streams and the Umpqua River watershed appear to harbour unique haplotypes. Sequences from O. mykiss revealed a disjunction between the Willamette watershed and southern watersheds suggesting divergent histories. We also identified similarities between populations in the northern Deschutes and southern Klamath watersheds, consistent with previously hypothesized connections between the two via inland basins. Oncorhynchus kisutch was only identified in coastal streams and the Klamath River watershed, with most diversity concentrated in the coastal Coquille watershed. Oncorhynchus tshawytscha was only observed at one site, but contained multiple haplotypes at each locus. The characterization of genetic diversity at multiple loci expands the knowledge gained from eDNA sampling and provides crucial information for conservation actions and genetic management.


Assuntos
DNA Ambiental/análise , Oncorhynchus , Animais , California , Código de Barras de DNA Taxonômico , Variação Genética , Oncorhynchus/genética , Oregon , Filogenia , Salmão/genética , Truta/genética
5.
Bull Environ Contam Toxicol ; 101(5): 556-561, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30244274

RESUMO

Widespread use of agrochemicals increases their likelihood of entering aquatic systems in mixture. Despite different modes of action, atrazine (herbicide) and tetracycline (antibiotic) adversely affect non-target photosynthetic organisms individually, but the effects of simultaneous exposure to both contaminants are untested. We created microcosms containing microalgae (Chlorella sp.), floating macrophytes (Lemna minor), and a zooplankton grazer (Daphnia magna). Microcosms were exposed to environmentally relevant concentrations of atrazine and tetracycline, alone and together, for 10 days. Atrazine decreased Chlorella sp. abundance, but not enough to reduce food availability to D. magna whose reproduction and mortality were unaffected. In contrast, tetracycline and atrazine appeared to have additive effects on L. minor abundance and growth inhibition. These additive adverse effects suggest increased potential for L. minor population decline over the long term, and potential for altered species interactions in aquatic systems receiving agricultural runoff.


Assuntos
Antibacterianos/toxicidade , Atrazina/toxicidade , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Araceae/efeitos dos fármacos , Chlorella/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Zooplâncton/efeitos dos fármacos
6.
J Chem Ecol ; 42(4): 329-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27059330

RESUMO

Defensive toxins are widespread in nature, yet we know little about how various environmental factors shape the evolution of chemical defense, especially in vertebrates. In this study we investigated the natural variation in the amount and composition of bufadienolide toxins, and the relative importance of ecological factors in predicting that variation, in larvae of the common toad, Bufo bufo, an amphibian that produces toxins de novo. We found that tadpoles' toxin content varied markedly among populations, and the number of compounds per tadpole also differed between two geographical regions. The most consistent predictor of toxicity was the strength of competition, indicating that tadpoles produced more compounds and larger amounts of toxins when coexisting with more competitors. Additionally, tadpoles tended to contain larger concentrations of bufadienolides in ponds that were less prone to desiccation, suggesting that the costs of toxin production can only be afforded by tadpoles that do not need to drastically speed up their development. Interestingly, this trade-off was not alleviated by higher food abundance, as periphyton biomass had negligible effect on chemical defense. Even more surprisingly, we found no evidence that higher predation risk enhances chemical defenses, suggesting that low predictability of predation risk and high mortality cost of low toxicity might select for constitutive expression of chemical defense irrespective of the actual level of predation risk. Our findings highlight that the variation in chemical defense may be influenced by environmental heterogeneity in both the need for, and constraints on, toxicity as predicted by optimal defense theory.


Assuntos
Bufo bufo/fisiologia , Meio Ambiente , Larva/química , Larva/fisiologia , Animais , Biomassa , Bufanolídeos/análise , Bufanolídeos/química , Modelos Lineares
7.
Ecotoxicology ; 25(6): 1170-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27209569

RESUMO

Analyzing functional species' characteristics (species traits) that represent physiological, life history and morphological characteristics of species help understanding the impacts of various stressors on aquatic communities at field conditions. This research aimed to study the combined effects of pesticides and other environmental factors (temperature, dissolved oxygen, dissolved organic carbon, floating macrophytes cover, phosphate, nitrite, and nitrate) on the trait modality distribution of aquatic macrofauna communities. To this purpose, a field inventory was performed in a flower bulb growing area of the Netherlands with significant variation in pesticides pressures. Macrofauna community composition, water chemistry parameters and pesticide concentrations in ditches next to flower bulb fields were determined. Trait modalities of nine traits (feeding mode, respiration mode, locomotion type, resistance form, reproduction mode, life stage, voltinism, saprobity, maximum body size) likely to indicate pesticides impacts were analyzed. According to a redundancy analysis, phosphate -and not pesticides- constituted the main factor structuring the trait modality distribution of aquatic macrofauna. The functional composition could be ascribed for 2-4 % to pesticides, and for 3-11 % to phosphate. The lack of trait responses to pesticides may indicate that species may have used alternative strategies to adapt to ambient pesticides stress. Biomass of animals exhibiting trait modalities related to feeding by predation and grazing, presence of diapause form or dormancy, reproduction by free clutches and ovoviviparity, life stage of larvae and pupa, was negatively correlated to the concentration of phosphate. Hence, despite the high pesticide pollution in the area, variation in nutrient-related stressors seems to be the dominant driver of the functional composition of aquatic macrofauna assembly in agricultural ditches.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Praguicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Animais , Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia , Países Baixos , Praguicidas/toxicidade , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Pollut Res Int ; 30(57): 119612-119626, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962757

RESUMO

As a common geo-engineering method to control internal load of nutrients and pollutants, sediment dredging has been used in many freshwater basins and has achieved certain effects. However, dredging can disturb water bodies and substrates and cause secondary pollution. It negatively affects the water environment system mainly from the following aspects. Dredging suddenly changes the hydrological conditions and many physical indicators of the water body, which will cause variations in water physicochemical properties. For example, changes in pH, dissolved oxygen, redox potential, transparency, and temperature can lead to a series of aquatic biological responses. On the other hand, sediment resuspension and deep-layer sediment exposure can affect the cycling of nutrients (e.g., nitrogen, phosphorus), the release and valence conversion of heavy metals, and the desorption and degradation of organic pollutants in the overlying water. This can further affect the community structure of aquatic organisms. The aim of this paper is to analyze the relevant literature on freshwater sediment dredging, and to summarize the current knowledge of the potential environmental risks caused by the dredging and utilization of freshwater sediments. Based on this, the paper attempts to propose suggestions to mitigate these adverse environmental impacts. These are significant contributions to the development of environmentally friendly freshwater sediment dredging technologies.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Lagos/química , Água , Metais Pesados/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-36901158

RESUMO

In order to develop a better model for quantifying aquatic community using environmental factors that are easy to get, we construct quantitative aquatic community models that utilize the different relationships between water environmental impact factors and aquatic biodiversity as follows: a multi-factor linear-based (MLE) model and a black box-based 'Genetic algorithm-BP artificial neural networks' (GA-BP) model. A comparison of the model efficiency and their outputs is conducted by applying the models to real-life cases, referring to the 49 groups of seasonal data observed over seven field sampling campaigns in Shaying River, China, and then performing model to reproduce the seasonal and inter-annual variation of the water ecological characteristics in the Huaidian (HD) site over 10 years. The results show that (1) the MLE and GA-BP models constructed in this paper are effective in quantifying aquatic communities in dam-controlled rivers; and (2) the performance of GA-BP models based on black-box relationships in predicting the aquatic community is better, more stable, and reliable; (3) reproducing the seasonal and inter-annual aquatic biodiversity in the HD site of Shaying River shows that the seasonal variation of species diversity for phytoplankton, zooplankton, and zoobenthos are inconsistent, and the inter-annual levels of diversity are low due to the negative impact of dam control. Our models can be used as a tool for aquatic community prediction and can become a contribution to showing how quantitative models in other dam-controlled rivers to assisting in dam management strategies.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Zooplâncton , Água , China , Monitoramento Ambiental
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220360, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899012

RESUMO

Light pollution caused by artificial light at night (ALAN) is increasingly recognized as a major driver of global environmental change. Since emissions are rapidly growing in an urbanizing world and half of the human population lives close to a freshwater shoreline, rivers and lakes are ever more exposed to light pollution worldwide. However, although light conditions are critical to aquatic species, and freshwaters are biodiversity hotspots and vital to human well-being, only a small fraction of studies conducted on ALAN focus on these ecosystems. The effects of light pollution on freshwaters are broad and concern all levels of biodiversity. Experiments have demonstrated diverse behavioural and physiological responses of species, even at low light levels. Prominent examples are skyglow effects on diel vertical migration of zooplankton and the suppression of melatonin production in fish. However, responses vary widely among taxa, suggesting consequences for species distribution patterns, potential to create novel communities across ecosystem boundaries, and cascading effects on ecosystem functioning. Understanding, predicting and alleviating the ecological impacts of light pollution on freshwaters requires a solid consideration of the physical properties of light propagating in water and a multitude of biological responses. This knowledge is urgently needed to develop innovative lighting concepts, mitigation strategies and specifically targeted measures. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Humanos , Biodiversidade , Água Doce , Rios
11.
Integr Environ Assess Manag ; 14(4): 437-441, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29528192

RESUMO

Triclosan is an antibacterial and antifungal chemical used in a variety of consumer products, including soaps, detergents, moisturizers, and cosmetics. Aquatic ecosystems may be exposed to triclosan following the release of remaining residues in wastewater effluents and biosolids. In December 2017, Environment and Climate Change Canada (ECCC) released a federal environmental quality guideline (FEQG) report that contained a federal water quality guideline (FWQG) for triclosan. This guideline will be used as an adjunct to the risk assessment and risk management of priority chemicals identified under the Government of Canada's Chemicals Management Plan (CMP). The FWQG value for triclosan (0.47 µg/L) was derived by ECCC using a hazardous concentration for 5% of species (HC5) from a species sensitivity distribution (SSD). We recalculated the FWQG after performing an independent analysis and evaluation of the available aquatic toxicity data for triclosan and compared our results with the ECCC FWQG value. Our independent analysis of the available aquatic toxicity data entailed conducting a literature search of all available and relevant studies, evaluating the quality and reliability of all studies considered using thorough and consistent study evaluation criteria, and thereby generating a data set of high-quality toxicity values. The selected data set includes 22 species spanning 5 taxonomic groups. An SSD was developed using this data set following the ECCC approaches. The HC5 from the SSD derived based on our validated data set is 0.76 µg/L. This HC5 value is slightly greater (i.e., less sensitive) than the value presented in ECCC's final FWQG. Integr Environ Assess Manag 2018;14:437-441. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia , Exposição Ambiental/efeitos adversos , Guias como Assunto , Triclosan/toxicidade , Qualidade da Água , Canadá
12.
PeerJ ; 3: e760, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699209

RESUMO

Environmental homogenization in coastal ecosystems impacted by human activities may be an important factor explaining the observed decline in fish species richness. We used fish community data (>200 species) from extensive surveys conducted in two biogeographic provinces (extent >1,000 km) in North America to quantify the relationship between fish species richness and local (grain <10 km(2)) environmental heterogeneity. Our analyses are based on samples collected at nearly 800 stations over a period of five years. We demonstrate that fish species richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental variables but not with their magnitude. The observed effect of heterogeneity on species richness was substantially greater than that generated by simulations from a random placement model of community assembly, indicating that the observed relationship is unlikely to arise from veil or sampling effects. Our results suggest that restoring or actively protecting areas of high habitat heterogeneity may be of great importance for slowing current trends of decreasing biodiversity in coastal ecosystems.

13.
Environ Pollut ; 189: 18-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631893

RESUMO

Natural systems are often exposed to individual insecticides or combinations of multiple insecticides. Using an additive and substitutive design, we examined how populations and communities containing >20 animal taxa are affected by four insecticides applied individually and as a mixture for 18 wks in aquatic mesocosms. The four insecticides had distinct lethal effects on the response and recovery of cladocerans, copepods, amphipods, isopods, and amphibians but not snails. The lethal effect on cladocerans and copepods induced trophic cascades that facilitated algal blooms and abiotic changes (higher pH and dissolved oxygen, but lower light transmission). Exposure to endosulfan resulted in a lag effect reducing cladocerans and spring-breeding amphibian abundance. The reduction in spring-breeding amphibian abundance led to cascading indirect effects on summer-breeding amphibians. Finally, the mixture treatment had lethal effects throughout the community that led to long-term effects on amphibian mass and unique indirect consequences on phytoplankton and abiotic variables.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Poluentes Químicos da Água/toxicidade , Animais , Cadeia Alimentar , Praguicidas/toxicidade , Reprodução/efeitos dos fármacos , Estações do Ano
14.
Mol Ecol Resour ; 14(5): 1049-59, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24655333

RESUMO

Metabarcode surveys of DNA extracted from environmental samples are increasingly popular for biodiversity assessment in natural communities. Such surveys rely heavily on robust genetic markers. Therefore, analysis of PCR efficiency and subsequent biodiversity estimation for different types of genetic markers and their corresponding primers is important. Here, we test the PCR efficiency and biodiversity recovery potential of three commonly used genetic markers - nuclear small subunit ribosomal DNA (18S), mitochondrial cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (mt16S) - using 454 pyrosequencing of a zooplankton community collected from Hamilton Harbour, Ontario. We found that biodiversity detection power and PCR efficiency varied widely among these markers. All tested primers for COI failed to provide high-quality PCR products for pyrosequencing, but newly designed primers for 18S and 16S passed all tests. Furthermore, multiple analyses based on large-scale pyrosequencing (i.e. 1/2 PicoTiter plate for each marker) showed that primers for 18S recover more (38 orders) groups than 16S (10 orders) across all taxa, and four vs. two orders and nine vs. six families for Crustacea. Our results showed that 18S, using newly designed primers, is an efficient and powerful tool for profiling biodiversity in largely unexplored communities, especially when amplification difficulties exist for mitochondrial markers such as COI. Universal primers for higher resolution markers such as COI are still needed to address the possible low resolution of 18S for species-level identification.


Assuntos
Biota , Código de Barras de DNA Taxonômico/métodos , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dados de Sequência Molecular , Ontário , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa