Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Exp Bot ; 75(11): 3452-3466, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497815

RESUMO

The 2-(2-phenethyl)chromones (PECs) are the signature constituents responsible for the fragrance and pharmacological properties of agarwood. O-Methyltransferases (OMTs) are necessary for the biosynthesis of methylated PECs, but there is little known about OMTs in Aquilaria sinensis. In this study, we identified 29 OMT genes from the A. sinensis genome. Expression analysis showed they were differentially expressed in different tissues and responded to drill wounding. Comprehensive analysis of the gene expression and methylated PEC content revealed that AsOMT2, AsOMT8, AsOMT11, AsOMT16, and AsOMT28 could potentially be involved in methylated PECs biosynthesis. In vitro enzyme assays and functional analysis in Nicotiana benthamiana demonstrated that AsOMT11 and AsOMT16 could methylate 6-hydroxy-2-(2-phenylethyl)chromone to form 6-methoxy-2-(2-phenylethyl)chromone. A transient overexpression experiment in the variety 'Qi-Nan' revealed that AsOMT11 and AsOMT16 could significantly promote the accumulation of three major methylated PECs. Our results provide candidate genes for the mass production of methylated PECs using synthetic biology.


Assuntos
Metiltransferases , Proteínas de Plantas , Thymelaeaceae , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Thymelaeaceae/enzimologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cromonas/metabolismo , Madeira/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Metilação , Regulação da Expressão Gênica de Plantas , Flavonoides
2.
Phytochem Anal ; 35(1): 135-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743673

RESUMO

INTRODUCTION: Agarwood, a fragrant resinous wood mainly formed by Aquilaria spp., is used worldwide as a natural fragrance and traditional medicine. A large amount of Aquilaria sinensis (Lour.) Gilg leaves are underutilised during the process of the agarwood industry, and the development of A. sinensis leaves as tea has recently attracted more and more attention. However, the small molecule profile of A. sinensis leaves and their bioactivities has been rarely reported. OBJECTIVE: To conduct a rapid untargeted liquid chromatography-mass spectrometry (LC-MS) analysis of A. sinensis leaves with a molecular networking (MN) strategy and evaluate its antioxidant and antidiabetic value. METHOD: A MN-assisted tandem mass spectrometry (MS/MS) analysis strategy was used to investigate the small molecule profile of A. sinensis leaves. Additionally, the integration of antioxidant and α-glucosidase inhibitory assays with MN analysis was executed to expeditiously characterise the bioactive compounds for potential prospective application. RESULTS: Five main chemical groups including phenol C-glycosides, organic acids, 2-(2-phenylethyl) chromones, benzophenone O-glycosides and flavonoids were rapidly revealed from the A. sinensis leaves. Eighty-one compounds were provisionally identified by comparing their MS/MS fragments with canonical pathways. The featured xanthone C-glycosides and benzophenone C-glycosides were recognised as the primary components of A. sinensis leaves. Several dimers and a trimer of mangiferin were reported firstly in A. sinensis leaves. Furthermore, 17 and 14 potential bioactive molecules were rapidly annotated from antioxidant and α-glucosidase inhibitory fraction, respectively. CONCLUSION: Our findings will help expand the utilisation of A. sinensis leaves and thus promote the high-quality development of agarwood industry.


Assuntos
Espectrometria de Massas em Tandem , Thymelaeaceae , Antioxidantes/farmacologia , alfa-Glucosidases , Flavonoides/química , Glicosídeos , Thymelaeaceae/química , Benzofenonas
3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474587

RESUMO

The resinous stem of Aquilaria sinensis (Lour.) Gilg is the sole legally authorized source of agarwood in China. However, whether other tissue parts can be potential substitutes for agarwood requires further investigation. In this study, we conducted metabolic analysis and transcriptome sequencing of six distinct tissues (root, stem, leaf, seed, husk, and callus) of A. sinensis to investigate the variations in metabolite distribution characteristics and transcriptome data across different tissues. A total of 331 differential metabolites were identified by chromatography-mass spectrometry (GC-MS), of which 22.96% were terpenoids. The differentially expressed genes (DEGs) in RNA sequencing were enriched in sesquiterpene synthesis via the mevalonate pathway. The present study establishes a solid foundation for exploring potential alternatives to agarwood.


Assuntos
Thymelaeaceae , Transcriptoma , Análise de Sequência de RNA , Sequência de Bases , Thymelaeaceae/química , Metaboloma
4.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792158

RESUMO

This work is focused on the characterization of the composition of a CO2 supercritical fluid extract of Aquilaria sinensis (Chinese agarwood) collected in the Dongguan area (China) and infected by mechanical methods. The constituents of this extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and quantified accurately by gas chromatography with a flame ionization detector (GC-FID), using an internal reference and predicted response factors. Since a significant number of components of this extract remained non-identified after the initial GC-MS analysis of the whole extract, its fractionation by chromatography on silica gel helped to characterize several additional constituents by isolation and structural analysis by NMR spectroscopy. The main components are the classical agarwood chromones (Flindersia chromone and its mono-, di-, and trimethoxylated analogues (respectively, 11.01% and 0.11-4.02%) along with sesquiterpenic constituents typically found in agarwood essential oils, like baimuxinal (1.90%) and kusunol (1.24%), as well as less common selinane dialdehydes (1.58-2.27%) recently described in the literature. Moreover, the structure and stereochemistry of a new sesquiterpenic alcohol, 14ß,15ß-dimethyl-7αH-eremophila-9,11-dien-8ß-ol (0.67%), was determined unambiguously by the combination of structural analysis (NMR, MS), hemisynthesis, and total synthesis, leading to dihydrokaranone and a neopetasane epimer.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Cromatografia Gasosa-Espectrometria de Massas , Thymelaeaceae , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Óleos Voláteis/química , Óleos Voláteis/análise , Extratos Vegetais/química , Thymelaeaceae/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
5.
Plant Foods Hum Nutr ; 79(2): 425-431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383946

RESUMO

The evergreen tree species Aquilaria sinensis holds significant economic importance due to its specific medicinal values and increasing market demand. However, the unrestricted illegal exploitation of its wild population poses a threat to its survival. This study aims to contribute to the conservation efforts of A. sinensis by constructing a library database of DNA barcodes, including two chloroplast genes (psbA-trnH and matK) and two nuclear genes (ITS and ITS2). Additionally, the genetic diversity and structure were estimated using inter-simple sequence repeats (ISSR) markers. Four barcodes of 57 collections gained 194 sequences, and 1371 polymorphic bands (98.63%) were observed using DNA ISSR fingerprinting. The Nei's gene diversity (H) of A. sinensis at the species level is 0.2132, while the Shannon information index (I) is 0.3128. The analysis of molecular variance revealed a large significant proportion of total genetic variations and differentiation among populations (Gst = 0.4219), despite a relatively gene flow (Nm = 0.6853) among populations, which were divided into two groups by cluster analysis. There was a close genetic relationship among populations with distances of 0.0845 to 0.5555. This study provides evidence of the efficacy and dependability of establishing a DNA barcode database and using ISSR markers to assess the extent of genetic diversity A. sinensis. Preserving the genetic resources through the conservation of existing populations offers a valuable proposition. The effective utilization of these resources will be further deliberated in subsequent breeding endeavors, with the potential to breed agarwood commercial lines.


Assuntos
Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico , Variação Genética , Repetições de Microssatélites , Thymelaeaceae , Código de Barras de DNA Taxonômico/métodos , Thymelaeaceae/genética , Thymelaeaceae/classificação , DNA de Plantas/genética , Marcadores Genéticos , Filogenia
6.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4100-4110, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307742

RESUMO

The stem bark of Aquilaria sinensis(Thymelaeaceae), with the local name of "Li-Wa-Zi-Xing", is used in traditional Yi medicine for treating chronic gastritis and other diseases. However, its active ingredients remain currently unknown. In this study, Helicobacter pylori(Hp) is used in anti-bacterial experiments to test the active compounds derived from A. sinensis stem bark. Nineteen compounds were isolated from the stem bark of A. sinensis by column chromatography, high-performance liquid chromatography, recrystallization, etc. Aquilaridiester(1) is a new lignan. The other eighteen compounds were reported before, including docosyl caffeate(2), 6-hydroxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one(3), qinanone A(4), 6-hydroxy-2-(2-phenylethyl)chromone(5), 6-hydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one(6), 6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]-4H-1-benzopyran-4-one(7), 6-hydroxy-2-[2-(3,4-dimethoxyphenyl)ethyl]chromone(8), 6-hydroxy-2-[(1E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-4H-1-benzopyran-4-one(9), genkwanin(10), 5-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxy-4H-1-benzopyran-4-one(11), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(12),(+)-syringaresinol(13), zhebeiresinol(14), aquilarin A(15), caruilignan D(16),(-)-ficusal(17), pistaciamide(18), and protocatechuic acid(19). The anti-bacterial results show that compounds 2-7, 10-11, and 13 have inhibitory activity against Hp. Among them, 6-hydroxy-2-(2-phenylethyl)chromone(5) and 6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]-4H-benzopyran-4-one(7) have superior inhibitory effects on Hp to others, with the same minimum inhibitory concentration(MIC) of 6.25 µmol·L~(-1). The 2-(2-phenylethyl)chromones are the major active ingredients in A. sinensis stem bark.


Assuntos
Antibacterianos , Helicobacter pylori , Testes de Sensibilidade Microbiana , Casca de Planta , Thymelaeaceae , Helicobacter pylori/efeitos dos fármacos , Casca de Planta/química , Antibacterianos/farmacologia , Antibacterianos/química , Thymelaeaceae/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Estrutura Molecular , Caules de Planta/química
7.
Indian J Microbiol ; 64(2): 705-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010995

RESUMO

Agarwood oil is one of the costliest essential oils used in perfumery, medicine and aroma. Production of the oil traditionally involves a soaking/fermentation step. Studies have indicated a definite role of the diverse microorganisms growing during the open soaking step, and in the emergent aroma of the essential oil. However, the temporal nature of fermentation and a key functional aspect i.e., the enzymatic properties of the microbes from the fermentation basin have not been studied yet. A total of 20 bacteria and 14 fungi isolated from fermentation basins located in Assam, India, at different soaking periods classified as early (0-20 days), medium (20-40 days) and late (40-60 days) clearly pointed towards an early fungal domination followed by succession of bacteria. The physico-chemical transformations of the wood are controlled by enzymatic properties (cellulase, xylanase, amylase and lipase) of the isolates. The results indicated a strong lignocellulosic substrate modulation potential in the four isolates, viz- Purpureocillium lilacinum (0.354 mg/mL), Mucor circinelloides (0.331 mg/mL), Penicillium citrinum (0.324 mg/mL) and Bacillus megaterium (0.152 mg/mL). The highest culturable abundance (CFU/mL) was found in M. circinelloides (2 × 109) among fungi and B. megaterium (4.5 × 109) among bacteria. The highest cellulase activity was shown by P. lilacinum (0.354 mg/mL) while xylanase and lipase by M. circinelloides (0.873 and 0.128 mg/mL). An interesting revelation was that a substantial proportion of the isolates (70% bacteria and 78% fungi) were positive for lipase activity. This is the first report on the "culturable microbiome" of the agarwood fermentation basin from a temporal and functional bioactivity perspective. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01257-y.

8.
Curr Issues Mol Biol ; 45(11): 8989-9002, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998741

RESUMO

This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and ß-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.

9.
Bioorg Chem ; 133: 106396, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758274

RESUMO

Six previously unprecedented 2-(2-phenylethyl)chromone-sesquiterpene hybrids, aquisinenins A-F (1 - 6), were isolated from the resinous wood of Aquilaria sinensis by a LC-MS-guided fractionation procedure. Their structures were determined by extensive spectroscopic analysis (1D and 2D NMR, UV, IR, and HRMS) and experimental and computed ECD data. Compounds 1 - 6 were rare dimeric 2-(2-phenylethyl)chromone-sesquiterpene derivatives featuring 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone hybridized with different sesquiterpene (eudesmane/guaiane type) moieties via ester bond. Furthermore, all the isolated compounds were evaluated for their protective effects on taurocholic acid (TCA)-induced GES-1 cell injury. The most effective aquisinenin F (6) was used to elucidate the involved mechanism on protection against TCA-induced gastric mucosal damage. Our results indicated that 6 protected against gastric mucosal cell insult by downregulation of the ER stress triggered by TCA.


Assuntos
Sesquiterpenos , Thymelaeaceae , Cromonas , Madeira/química , Flavonoides/química , Thymelaeaceae/química , Resinas Vegetais , Estrutura Molecular
10.
Environ Res ; 235: 116633, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459949

RESUMO

Current artificial agarwood-inducing techniques yield low quality and quantities of agarwood. On account of unclear agarwood formation mechanism there's still no high-efficiency agarwood inducing method globally spread. In this study, a complete agarwood column was taken out of the live tree trunk at 6 months post-treatment by a novel agarwood-inducing method (Agar-Bit) in cultivated Aquilaria sinensis trees, and was first divided into 8 parts (A1-4, B1-4) involving agarwood layer (A part) and brown inner layer (B part) according to its color and length for analysis. These eight parts were analyzed microscope observation, 6 chromones' contents and characteristic chromatograms by HPLC (high performance liquid chromatography), GC-MS (gas chromatography-mass spectrometer) with to determine chemical changes. Other quality characteristics, TLC (thin-layer chromatography) and alcohol soluble extraction content, were also determined. Our results showed that resin changed with A to B part and microstructure changed with length. Six chromones in the eight parts varied with layers. Result of characteristic chromatograms showed that both A and B parts contained six characteristic peaks. Volatile component distributed mainly in A part, but important chromones were also detected in B parts. Results from TLC and alcohol soluble extraction content also showed that B part contained characteristic compounds of agarwood. In addition, some compounds in the essential oil detected by GC-MS in A part produced by Agar-Bit were similar to that found in natural agarwood, compounds in B parts were similar to BC agarwood, as were the results for the TLC and alcohol soluble extraction content. In conclusion, the chemical distribution obtained here from Agar-Bit could provide some clues to optimize high production and high efficiency stimulating method for whole tree full of resin in Aquilaria sinensis and to reveal the subtle agarwood formation mechanism throughout a whole trunk.


Assuntos
Cromonas , Thymelaeaceae , Ágar/análise , Cromonas/análise , Cromatografia Gasosa-Espectrometria de Massas , Thymelaeaceae/química , Madeira/química
11.
Genomics ; 114(4): 110440, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905835

RESUMO

The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.


Assuntos
Lepidópteros , MicroRNAs , Mariposas , Animais , Elementos de DNA Transponíveis , Lepidópteros/genética , Mariposas/genética , Árvores/genética
12.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139213

RESUMO

NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.


Assuntos
Malvales , Thymelaeaceae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Thymelaeaceae/genética , Thymelaeaceae/química , Genes de Plantas
13.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838655

RESUMO

Agarwood, a highly valuable resin/wood combination with diverse pharmacological activities but scarce supply, has a long history of being used as a medicine in several medical systems. Grafted Kynam agarwood (GKA) has been cultivated successfully recently and has the qualities meeting the definition of premium Kynam agarwood. However, there are few comprehensive comparisons between GKA and normal agarwood in terms of traits, global composition, and activity, and some key issues for GKA to be adopted into the traditional Chinese medical (TCM) system have not been elaborated. The two types of agarwood samples were evaluated in terms of trait characteristics, physicochemical indicators, key component groups, and global compositional profile. Furthermore, a molecular docking was performed to investigate the active ingredients. In vitro activity assays were performed to evaluate the activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by GKA and normal agarwood. The results revealed that, overall, the traits, microscopic characteristics, chemical composition types, and bioactivity between GKA and normal agarwood were similar. The main differences were the content of resin (ethanolic extract content), the content of key component groups, and the composition of the different parent structural groups of 2-(2-phenethyl) chromones (PECs). The contents of total PEC and ethanol extract content of GKA were significantly higher than those of normal agarwood. The MS-based high-throughput analysis revealed that GKA has higher concentrations of sesquiterpenes and flindersia-type 2-(2-phenylethyl) chromones (FTPECs) (m/z 250-312) than normal agarwood. Molecular docking revealed that parent structural groups of FTPECs activated multiple signaling pathways, including the AMPK pathway, suggesting that FTPECs are major active components in GKA. The aim of this paper is to describe the intrinsic reasons for GKA as a high-quality agarwood and a potential source for novel drug development. We combined high-throughput mass spectrometry and multivariate statistical analysis to infer the different components of the two types of agarwood. Then we combined virtual screening and in vitro activity to construct a component/pharmacodynamic relationship to explore the causes of the activity differences between agarwood with different levels of quality and to identify potentially valuable lead compounds. This strategy can also be used for the comprehensive study of other TCMs with different qualities.


Assuntos
Proteínas Quinases Ativadas por AMP , Thymelaeaceae , Simulação de Acoplamento Molecular , Thymelaeaceae/química , Cromonas/química , Madeira/química , Resinas Vegetais/análise , Extratos Vegetais/química , Flavonoides/química
14.
Toxicol Mech Methods ; 33(8): 656-666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37434431

RESUMO

BACKGROUND: Aquilaria sinensis (Lour.) Gilg (ASG) has been used as traditional medicine for centuries. However, the active ingredients from leaves and their anti-inflammatory mechanism are rarely reported. The network pharmacology and molecular docking strategies were applied to explore the potential mechanisms of Benzophenone compounds from the leaves of ASG (BLASG) against inflammation. METHODS: BLASG-related targets were obtained from the SwissTargetPrediction and PharmMapper databases. Inflammation-associated targets were retrieved from GeneGards, DisGeNET, and CTD databases. Cytoscape software was used to draw a network diagram of BLASG and its corresponding targets. DAVID database was applied for enrichment analyses. A protein-protein interaction (PPI) network was constructed to identify the hub targets of BLASG. Molecular docking analyses were performed by AutoDockTools 1.5.6. Moreover, we used ELISA and qRT-PCR assays to validate the anti-inflammatory effects of BLASG by cell experiments. RESULTS: Four BLASG were extracted from ASG, and corresponding 225 potential targets were identified. PPI network analysis indicated that SRC, PIK3R1, AKT1, and other targets were the core therapeutic targets. Enrichment analyses revealed that the effects of BLASG are regulated by targets associated with apoptosis and inflammation-related pathways. In addition, molecular docking revealed that BLASG combined well with PI3K and AKT1. Furthermore, BLASG significantly decreased the inflammatory cytokines levels and down-regulated PIK3R1 and AKT1 gene expression in RAW264.7 cells. CONCLUSION: Our study predicted the potential targets and pathways of BLASG against inflammation, which offered a promising strategy to reveal the therapeutic mechanism of natural active components in the treatment of diseases.


Assuntos
Medicamentos de Ervas Chinesas , Thymelaeaceae , Simulação de Acoplamento Molecular , Farmacologia em Rede , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Folhas de Planta , Benzofenonas/farmacologia
15.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2480-2489, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282877

RESUMO

Qualitative and quantitative analysis of 2-(2-phenylethyl) chromones in sodium chloride(NaCl)-treated suspension cells of Aquilaria sinensis was conducted by UPLC-Q-Exactive-MS and UPLC-QQQ-MS/MS. Both analyses were performed on a Waters T3 column(2.1 mm×50 mm, 1.8 µm) with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as mobile phases at gradient elution. MS data were collected by electrospray ionization in positive ion mode. Forty-seven phenylethylchromones was identified from NaCl-treated suspension cell samples of A. sinensis using UPLC-Q-Exactive-MS, including 22 flindersia-type 2-(2-phenylethyl) chromones and their glycosides, 10 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and 15 mono-epoxy or diepoxy-5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones. Additionally, 25 phenylethylchromones were quantitated by UPLC-QQQ-MS/MS. Overall, the rapid and efficient qualitative and quantitative analysis of phenylethylchromones in NaCl-treated suspension cells of A. sinensis by two LC-MS techniques, provides an important reference for the yield of phenylethylchromones in Aquilariae Lignum Resinatum using in vitro culture and other biotechnologies.


Assuntos
Cromonas , Thymelaeaceae , Cloreto de Sódio , Cromatografia Líquida , Flavonoides , Espectrometria de Massas em Tandem
16.
Beilstein J Org Chem ; 19: 998-1007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404799

RESUMO

Five new eudesmane-type sesquiterpenoids (aquisinenoids F-J (1-5)) and five known compounds (6-10) were isolated from the agarwood of Aquilaria sinensis. Their structures, including absolute configurations, were identified by comprehensive spectroscopic analyses and computational methods. Inspired by our previous study on the same kinds of skeletons, we speculated that the new compounds have anticancer and anti-inflammatory activities. The results did not show any activity, but they revealed the structure-activity relationships (SAR).

17.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36171555

RESUMO

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Assuntos
Sesquiterpenos , Thymelaeaceae , Perfilação da Expressão Gênica , Oxigênio/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Sesquiterpenos/metabolismo , Amido/metabolismo , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
18.
Genome ; 65(8): 443-457, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849843

RESUMO

Aquilaria sinensis is an important non-timber tree species for producing high-value agarwood, which is widely used as a traditional medicine and incense. Agarwood is the product of Aquilaria trees in response to injury and fungal infection. The APETALA2/ethylene responsive factor (AP2/ERF) transcription factors (TFs) play important roles in plant stress responses and metabolite biosynthesis. In this study, 119 AsAP2/ERF genes were identified from the A. sinensis genome and divided into ERF, AP2, RAV, and Soloist subfamilies. Their conserved motif, gene structure, chromosomal localization, and subcellular localization were characterized. A stress/defense-related ERF-associated amphiphilic repression (EAR) motif and an EDLL motif were identified. Moreover, 11 genes that were highly expressed in the agarwood layer in response to whole-tree agarwood induction technique (Agar-Wit) treatment were chosen, and their expression levels in response to methyl jasmonate (MeJA), salicylic acid (SA), or salt treatment were further analyzed using the quantitative real time PCR (qRT-PCR). Among the 11 genes, eight belonged to subgroup B-3. All 11 genes were significantly upregulated under salt treatment, while eight genes were significantly induced by both MeJA and SA. In addition, the gene clusters containing these upregulated genes on chromosomes were observed. The results obtained from this research not only provide useful information for understanding the functions of AP2/ERF genes in A. sinensis but also identify candidate genes and gene clusters to dissect their regulatory roles in agarwood formation for future research.


Assuntos
Regulação da Expressão Gênica de Plantas , Thymelaeaceae , Etilenos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
19.
J Asian Nat Prod Res ; 24(11): 1033-1040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34958625

RESUMO

Two new dimeric 2-(2-phenylethyl)chromones, aquilasinenones L and M (1 and 2), and one new monomer analogue, 5S, 6 R, 7S, 8 R-tetrahydroxy-[2-(3-methoxy-4-hydroxyphenyl)ethyl]- 5,6,7,8-tetrahydrochromone (3), together with two known compounds, were isolated from the artificial agarwood originating from Aquilaria sinensis. Compound 1 was the first structure found with C8-O-C4"' linkage among 2-(2-phenylethyl)chromone dimers. Their structures were unambiguously elucidated based on 1 D and 2 D NMR spectroscopy, as well as by comparison with the literature. The absolute configuration was determined by ECD calculation. None of the compounds exhibited acetylcholinesterase inhibitory activity.


Assuntos
Cromonas , Thymelaeaceae , Cromonas/química , Acetilcolinesterase , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Estrutura Molecular , Thymelaeaceae/química , Flavonoides/química
20.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684324

RESUMO

Agarwood, popularly known as oudh or gaharu, is a fragrant resinous wood of high commercial value, traded worldwide and primarily used for its distinctive fragrance in incense, perfumes, and medicine. This fragrant wood is created when Aquilaria trees are wounded and infected by fungi, producing resin as a defense mechanism. The depletion of natural agarwood caused by overharvesting amidst increasing demand has caused this fragrant defensive resin of endangered Aquilaria to become a rare and valuable commodity. Given that instances of natural infection are quite low, artificial induction, including biological inoculation, is being conducted to induce agarwood formation. A long-term investigation could unravel insights contributing toward Aquilaria being sustainably cultivated. This review will look at the different methods of induction, including physical, chemical, and biological, and compare the production, yield, and quality of such treatments with naturally formed agarwood. Pharmaceutical properties and medicinal benefits of fragrance-associated compounds such as chromones and terpenoids are also discussed.


Assuntos
Perfumes , Thymelaeaceae , Odorantes , Perfumes/análise , Resinas Vegetais/análise , Thymelaeaceae/química , Árvores , Madeira/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa