Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 125: 701-711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375951

RESUMO

Paddy soils are potential hotspots of combined contamination with arsenic (As) and antibiotics, which may induce co-selection of antibiotic resistance genes (ARGs) and As biotransformation genes (ABGs), resulting in dissemination of antimicrobial resistance and modification in As biogeochemical cycling. So far, little information is available for these co-selection processes and specific patterns between ABGs and ARGs in paddy soils. Here, the 16S rRNA amplicon sequencing and high-throughput quantitative PCR and network analysis were employed to investigate the dynamic response of ABGs and ARGs to As stress and manure application. The results showed that As stress increased the abundance of ARGs and mobile genetic elements (MGEs), resulting in dissemination risk of antimicrobial resistance. Manure amendment increased the abundance of ABGs, enhanced As mobilization and methylation in paddy soil, posing risk to food safety. The frequency of the co-occurrence between ABGs and ARGs, the host bacteria carrying both ARGs and ABGs were increased by As or manure treatment, and remarkably boosted in soils amended with both As and manure. Multidrug resistance genes were found to have the preference to be co-selected with ABGs, which was one of the dominant co-occurring ARGs in all treatments, and manure amendment increased the frequency of Macrolide-Lincosamide-Streptogramin B resistance (MLSB) to co-occur with ABGs. Bacillus and Clostridium of Firmicutes are the dominant host bacteria carrying both ABGs and ARGs in paddy soils. This study would extend our understanding on the co-selection between genes for antibiotics and metals, also unveil the hidden environmental effects of combined pollution.


Assuntos
Arsênio , Solo , Esterco/análise , RNA Ribossômico 16S/genética , Genes Bacterianos , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Bactérias/genética , Biotransformação
2.
Environ Int ; 190: 108823, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908273

RESUMO

Microbially-mediated arsenic biotransformation plays a pivotal role in the biogeochemical cycling of arsenic; however, the presence of arsenic biotransformation genes (ABGs) in urban dust remains unclear. To investigate the occurrence and spatiotemporal distributions of ABGs, a total of one hundred and eighteen urban dust samples were collected from different districts of Xiamen city, China in summer and winter. Although inorganic arsenic species, including arsenate [As(V)] and arsenite [As(III)], were found to be predominant, the methylated arsenicals, particularly trimethylarsine oxide [TMAs(V)O] and dimethylarsenate [DMAs(V)], were detected in urban dust. Abundant ABGs were identified in urban dust via AsChip analysis (a high-throughput qPCR chip for ABGs), of which As(III) S-adenosylmethionine methyltransferase genes (arsM), As(V) reductase genes (arsC), As(III) oxidase genes (aioA), As(III) transporter genes (arsB), and arsenic-sensing regulator genes (arsR) were the most prevalent, collectively constituting more than 90 % of ABGs in urban dust. Microbes involved in arsenic methylation were assigned to bacteria (e.g., Actinomycetes and Alphaproteobacteria), archaea (e.g., Halobacteria), and eukaryotes (e.g., Chlamydomonadaceae) in urban dust via the arsM amplicon sequencing. Temperature, a season-dependent environmental factor, profoundly affected the abundance of ABGs and the composition of microbes involved in arsenic methylation. This study provides new insights into the presence of ARGs within the urban dust.


Assuntos
Arsênio , Biotransformação , Poeira , Poeira/análise , Arsênio/análise , Arsênio/metabolismo , China , Monitoramento Ambiental , Cidades , Bactérias/genética , Arsenicais/metabolismo , Arsenicais/análise , Archaea/genética
3.
Environ Int ; 184: 108460, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335625

RESUMO

Although the arsenic contamination and antibiotic resistance genes (ARGs) during composting have been studied separately, there is limited information on their interactions, particularly, the relationship between arsenic biotransformation genes (ABGs) and ARGs. Therefore, the present study used different forms of arsenic stress (organic and inorganic arsenic at 10 and 50 mg/kg) in pig manure and straw co-composting, to evaluate the effects of arsenic stress on microbial community structures, metabolic function, ABGs, and ARGs. The results showed that arsenic stress had different effects on different parameters and promoted the microbial formation of humic acid and the biodegradation of fulvic acid. Inorganic arsenic showed more rapid effects on microbial community structure, visible within about 20 days, while the effects of organic arsenic were later (about 45 days) due to the necessity of transformation. Moreover, the addition of organic roxarsone and inorganic arsenic resulted in higher expression of ABGs and ARGs, respectively. Arsenic addition also caused increased expression of genes associated with replication and repair. A significant relationship was observed between ABG and ARG expression, for instance, genes involved in arsenic reduction and oxidation were influenced by genes involved in aminoglycoside and chloramphenicol resistance genes (p < 0.05). These complex interactions among microorganisms, functional genes, and external parameters contribute to the understanding of the mechanisms underlying cross-contamination.


Assuntos
Arsênio , Compostagem , Animais , Suínos , Antibacterianos/farmacologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Biotransformação , Esterco
4.
Environ Int ; 185: 108517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401435

RESUMO

The organoarsenical feed additive roxarsone (ROX) is a ubiquitous threat due to the unpredictable levels of arsenic (As) released by soil bacteria. The earthworms representing soil fauna communities provide hotspots for As biotransformation genes (ABGs). Nonetheless, the role of gut bacteria in this regard is unclear. In this study, the changes in As speciation, bacterial ABGs, and communities were analyzed in a ROX-contaminated soil (50 mg/kg As in ROX form) containing the earthworm Eisenia feotida. (RE vs. R treatment). After 56 d, earthworms reduced the levels of both ROX and total As by 59 % and 17 %, respectively. The available As content was 10 % lower in the RE than in R treatment. Under ROX stress, the total ABG abundance was upregulated in both earthworm gut and soil, with synergistic effects observed following RE treatment. Besides, the enrichment of arsM and arsB genes in earthworm gut suggested that gut bacteria may facilitate As removal by enhancing As methylation and transport function in soil. However, the bacteria carrying ABGs were not associated with the ABG abundance in earthworm gut indicating the unique strategies of earthworm gut bacteria compared with soil bacteria due to different microenvironments. Based on a well-fit structural equation model (P = 0.120), we concluded that gut bacteria indirectly contribute to ROX transformation and As detoxification by modifying soil ABGs. The positive findings of earthworm-induced ROX transformation shed light on the role of As biomonitoring and bioremediation in organoarsenical-contaminated environments.


Assuntos
Arsênio , Oligoquetos , Roxarsona , Poluentes do Solo , Animais , Arsênio/análise , Roxarsona/farmacologia , Solo/química , Bactérias , Biotransformação , Poluentes do Solo/análise
5.
ISME Commun ; 4(1): ycae106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39229495

RESUMO

Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.

6.
Sci Total Environ ; 892: 164230, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37225104

RESUMO

Biological aqua crust (BAC), as a novel biological crust with high arsenic (As) immobilization capacity, might be an ideal nature-based solution for As removal in mine drainage. This study examined the As speciation, binding fraction and biotransformation genes in the BACs to find out the underlying mechanism of As immobilization and biotransformation. Results showed that the BACs could immobilize As from mine drainage up to 55.8 g/kg, and their As immobilization concentrations were 1.3-6.9 times higher than that of sediments. Extremely high As immobilization capacity was attributed to the processes of bioadsorption/absorption and biomineralization driven by Cyanobacteria. The high abundance of As(III) oxidation genes (27.0 %) enhanced microbial As(III) oxidation, resulting in >90.0 % of As(V) with low toxicity and mobility in the BACs. The increase in abundances of aioB, arsP, acr3, arsB, arsC and arsI with As was the key process for microbiota in the BACs for resistance to the As toxicity. In conclusion, our findings innovatively confirmed the potential mechanism of As immobilization and biotransformation mediated by the microbiota in the BACs and highlighted the important role of BACs for As remediation in mine drainage.


Assuntos
Arsênio , Cianobactérias , Arsênio/metabolismo , Biotransformação , Cianobactérias/metabolismo , Oxirredução
7.
Sci Total Environ ; 806(Pt 2): 150279, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600205

RESUMO

The growing contamination of arsenic and plastics has severely effects on the soil fauna health, including shifts of gut microbiota community. A few studies have focused on effects of microplastics and metal(loid) in soil and fauna gut microbiome. However, the environmental effect of nanoplastics and arsenic on the earthworm gut microbiota, especially on arsenic biotransformation in the gut, remain largely unknown. Here, a microcosm study was performed to explore the effects of nanoplastics and arsenic on the microbiota characteristics in earthworm Metaphire vulgaris gut using Illumina high throughput sequencing, and to investigate changes in the gut microbiota-mediated arsenic biotransformation genes (ABGs) by using high-throughput quantitative PCR. Our results demonstrated that the concentration of arsenic in the earthworm body tissues after exposure to arsenic and nanoplastics was significantly lower from that with arsenic alone exposure. Moreover, the clearly different bacterial community was observed in the soil compared with the earthworm gut, which was dominated by Proteobacteria, Actinobacteria, and Firmicutes at phylum level. Arsenic exposure significantly disturbed bacterial community structure in the earthworm gut, but exposure to nanoplastics did not induce gut microbiota changes. More interestingly, nanoplastics can relieve adverse effect of arsenic on the gut microbiota possibly by adsorbing arsenic. In addition, a total of 16 ABGs were detected, and predominant genes involved in arsenic reduction and transport process were observed in the earthworm guts. In short, this study provides a new picture of the effects of nanoplastics and arsenic on the gut microbiota and arsenic biotransformation in soil fauna gut.


Assuntos
Arsênio , Microbioma Gastrointestinal , Oligoquetos , Animais , Microplásticos , Plásticos , Solo
8.
Environ Int ; 138: 105535, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220815

RESUMO

Arsenic (As) is a potential contaminant in sewage sludge that may affect waste treatment and limit the use of these waste materials as soil amendments. Anaerobic digestion (AD) is an important and effective process for the treatment of sewage sludge and the chemical speciation of As is particularly important in sludge AD. However, the biotransformation genes of As in sludge during AD has not been fully explored. In this study, the influent and effluent sludge of anaerobic digester in a wastewater treatment plant (WWTP) was collected to investigate the species transformations of As, the abundance and diversity of As biotransformation genes was explored by real-time PCR (qPCR) and metagenomic sequencing, separately. The results showed that arsenite [As(III)] and arsenate [As(V)] were predominant in the influent sludge, whereas the relative abundance of monomethylarsenic acid (MMA) increased by 25.7% after digestion. As biotransformation genes were highly abundant, and the As(III) S-adenosylmethionine methyltransferase (arsM) gene was the predominant which significantly increased after AD by qPCR analysis. Metagenomic analysis indicated that the diversity of the arsM-like sequences also increased significantly after AD. Most of the arsM-like sequences in all the influent and effluent sludge samples were related to Bacteroidetes and Alphaproteobacteria. Furthermore, co-occurrence network analysis indicated a strong correlation between the microbial communities and As. This study provides a direct and reliable reference on As biotransformation genes and microbial community in the AD of sludge.


Assuntos
Arsênio , Esgotos , Anaerobiose , Reatores Biológicos , Biotransformação , Águas Residuárias
9.
J Hazard Mater ; 391: 122200, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044634

RESUMO

Straw biochar and straw application to paddy soil dramatically altered arsenic (As) biogeochemical cycling in soil-rice system, but it remains unknown how As biotransformation microbes (ABMs) contribute to these processes. In this study, rice pot experiments combining terminal restriction fragment length polymorphism (T-RFLP) analysis and clone library were performed to characterize ABMs. Through linear discriminant analysis (LDA) effect size (LEfSe) and correlation analysis, results revealed that arrA-harbouring iron-reducing bacteria (e.g., Geobacter and Shewanella) and arsC-harbouring Gammaproteobacteria (e.g., fermentative hydrogen-producing and lignin-degrading microorganisms) potentially mediated arsenate [As(V)] reduction under biochar and straw amendments, respectively. Methanogens and sulfate-reducing bacteria (SRB) carrying arsM gene might regulate methylated As concentration in soil-rice system. Network analysis demonstrated that the association among ABMs in rhizosphere was significantly stronger than that in bulk soil. Arsenite [As(III)] methylators carrying arsM gene exhibited much stronger co-occurrence pattern with arsC-harbouring As(V) reducers than with arrA-harbouring As(V) reducers. This study would broaden our insights for the dramatic variation of As biogeochemical cycling in soil-rice system after straw biochar and straw amendments through the activities of ABMs, which could contribute to the safe rice production and high rice yield in As-contaminated fields.


Assuntos
Arsênio/metabolismo , Carvão Vegetal , Oryza , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biotransformação/genética , Genes Bacterianos , Solo
10.
Environ Pollut ; 253: 949-958, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31351303

RESUMO

Microbial transformation of arsenic (As) plays a key role in As biogeochemical cycling and affects the mobility, bioavailability, and toxicity of As. This study aims to investigate the accumulation of As in marine sediments at different water depths in the East China Sea and reveal the abundance and diversity of the aioA, arrA, arsC, and arsM genes through quantitative real-time polymerase chain reaction (qPCR) and high-throughput sequencing. Results showed that the As content in sediments ranged from 5.53 mg kg-1 to 17.70 mg kg-1, which decreased with water depth. Abundant As biotransformation genes with low diversity were identified in these sediments, of which arsM and arrA were the most abundant. Significant positive correlation exists between the arsM and arrA gene abundance and between arsC and aioA, indicating the co-occurrence of the As biotransformation genes in microbes in marine sediments. Metagenomics analysis revealed that arsM gene was mainly distributed in Alphaproteobacteria, Solibacteres, Deltaproteobacteria, Clostridia, and Bacilli in these sediments. Among the sediment properties, total N, total S, C/N, and TOC were important factors that shaped the abundance profile of the genes involved in As transformation. This study provides a picture of As biotransformation genes in marine sediments from the East China Sea, which may affect As transformation and the ultimate fate of As in a marine environment.


Assuntos
Arsênio/metabolismo , Biotransformação/genética , Sedimentos Geológicos/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , China , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa