Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
BMC Plant Biol ; 24(1): 667, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997682

RESUMO

Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.


Assuntos
Arsênio , Cobre , Elymus , Metabolômica , Micorrizas , Poluentes do Solo , Arsênio/metabolismo , Cobre/metabolismo , Micorrizas/fisiologia , Micorrizas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Elymus/metabolismo , Elymus/efeitos dos fármacos , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
2.
Bioorg Chem ; 150: 107535, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38865859

RESUMO

Phenylarsine oxide (PAO) is a known environmental pollutant and skin keratinocytes are most seriously affected. Baicalin (BCN) was reported to have antioxidant and anti-inflammatory effects, but its protective effect against PAO toxicity is unknown. This study aimed at exploring whether baicalin can reverse the toxicity of human epidermal keratinocytes that are subjected to PAO exposure and underlying mechanisms. In silico analysis from a publicly accessible HaCaT cell transcriptome dataset exposed to chronic Arsenic showed significant differential expression of several genes, including the genes related to DNA replication. Later, we performed in vitro experiments, in which HaCaT cells were exposed to PAO (500 nM) in the existence of BCN (10-50 µM). Treatment of PAO alone induces the JNK, p38 and caspase-3 activation, which were engaged in the apoptosis induction, while the activity of AKT was significantly inhibited, which was engaged in the suppression of apoptosis. PAO suppressed SIRT3 expression and induced intracellular reactive oxygen species (ROS), causing a marked reduce in cell viability and apoptosis. However, BCN treatment restored the PAO-induced suppression of SIRT3 and AKT expression, reduced intracellular ROS generation, and markedly suppressed both caspase-3 activation and apoptosis induction. However, the protective effect of BCN was significantly attenuated after pretreatment with nicotinamide, an inhibitor of SIRT3. These findings indicate that BCN protects against cell death induced by PAO via inhibiting excessive intracellular ROS generation via restoring SIRT3 activity and reactivating downstream AKT pathway. In this study, we firstly shown that BCN is an efficient drug to prevent PAO-induced skin cytotoxicity, and these findings need to be confirmed by in vivo and clinical investigations.


Assuntos
Apoptose , Arsenicais , Sobrevivência Celular , Flavonoides , Queratinócitos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Flavonoides/farmacologia , Flavonoides/química , Arsenicais/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Relação Estrutura-Atividade , Pele/efeitos dos fármacos , Pele/patologia
3.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466444

RESUMO

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Assuntos
Arsênio , Basidiomycota , Metais Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo
4.
Cell Mol Life Sci ; 80(11): 342, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904059

RESUMO

Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.


Assuntos
Arsênio , Metaloides , Doenças Neurodegenerativas , Humanos , Arsênio/toxicidade , Antimônio/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Dano ao DNA
5.
Pestic Biochem Physiol ; 204: 106064, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277381

RESUMO

Environmental pollution caused by arsenic or its compounds is called arsenic pollution. Arsenic pollution mainly comes from people's mining and smelting of arsenic compounds. In addition, the widespread use of arsenic compounds, such as the use and production of arsenic-containing pesticides, is also a source of arsenic contamination. Arsenic contamination leads to an increased risk of arsenic exposure, and the multi-organ toxicity induced by arsenic exposure is a global health problem. As a non-mammalian vertebrate with high nutrient levels, chickens readily absorb and accumulate arsenic from their food. Relevant studies have shown that arsenic exposure induces hepatotoxicity in chickens, and there has been a steady stream of research into the specific mechanisms involved. PANoptosis, a newly discovered and unique mode of programmed cell death (PCD) characterized by both apoptosis, cellular pyroptosis, and necroptosis. There are no studies to indicate whether chicken liver toxicity due to arsenic is associated with PANoptosis. Therefore, we established chicken animal models and chicken primary hepatocyte models exposed to different arsenic concentrations to dissect the role and mechanism of PANoptosis in arsenic exposure-induced hepatotoxicity in chickens. Our histopathological results showed that arsenic treatment caused dose-dependent damage to chicken liver structure. Meanwhile, different doses of arsenic treatment groups caused significant up-regulation of the protein level of ZBP1, a key factor of PANoptosis. And then consequently triggered the abnormal gene and protein expression levels of apoptosis-associated factors (Caspase-8, Caspase-7, Caspase-3), cellular pyroptosis-associated factors (NLRP3, ASC, GSDMD) and necroptosis-associated factors (RIPK1, RIPK3, MLKL). In conclusion, our study revealed that PANoptosis is involved in arsenic-induced chicken hepatotoxicity. Our findings provide a new perspective on the pathogenesis of arsenic exposure-induced hepatotoxicity in chickens.


Assuntos
Arsênio , Galinhas , Fígado , Animais , Arsênio/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Necroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos
6.
Arch Microbiol ; 205(9): 316, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608161

RESUMO

Arsenic poses a significant health risk worldwide, impacting the gut microbiota, reproductive health, and development. To address this issue, a cost-effective method like probiotic supplementation could be beneficial. However, the interplay between arsenic toxicity, probiotics, gut microbiota, and maternal transcript modulation remains unexplored. This study investigates the impact of Lactobacillus rhamnosus (L. rhamnosus) DSM 20021 on the proportions of Firmicutes and Bacteroidetes, as well as its effects on embryonic development in zebrafish induced by arsenic trioxide (As2O3). Adult zebrafish were exposed to both high and environmentally relevant concentrations of As2O3 (10, 50, and 500 ppb) for 1, 6, and 12 weeks. qPCR analysis revealed increased proportions of Firmicutes and Bacteroidetes in all As2O3-exposed and As2O3 + L. rhamnosus-exposed groups, while no significant changes were observed in groups exposed only to L. rhamnosus DSM 20021. The larvae, exposed to 500 ppb of As2O3 for 12 weeks, exhibited low growth, decreased survival rates, and morphological deformities. However, these adverse effects were reversed upon exposure to only L. rhamnosus DSM 20021. Furthermore, the expression of DVR1 and ABCC5, which are involved in defense against xenobiotics and embryo development, decreased significantly in As2O3 (500 ppb) and As2O3 (500 ppb) + L. rhamnosus-exposed groups, whereas ameliorative effects were observed in only L. rhamnosus DSM 20021-exposed groups.


Assuntos
Arsênio , Lacticaseibacillus rhamnosus , Feminino , Animais , Arsênio/toxicidade , Firmicutes , Peixe-Zebra , Desenvolvimento Embrionário , Bacteroidetes/genética
7.
Environ Geochem Health ; 45(6): 3423-3446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36335536

RESUMO

The suffering from arsenic toxicity is a long-standing concern in Asian countries. The role of the key factors (arsenic intake, age and sex) regulating arsenic toxicity is aimed to evaluate for a severely exposed population from Murshidabad district, West Bengal. Mean arsenic concentrations in drinking water supplied through tube well, Sajaldhara treatment plant and pipeline were observed as 208, 27 and 54 µg/l, respectively. Urinary arsenic concentration had been observed as < 3-42.1, < 3-56.2 and < 3-80 µg/l in children, teenagers and adults, respectively. Mean concentrations of hair and nail arsenic were found to be 0.84 and 2.38 mg/kg; 3.07 and 6.18 mg/kg; and 4.41 and 9.07 mg/kg, respectively, for the studied age-groups. Water arsenic was found to be associated with hair and nail (r = 0.57 and 0.60), higher than urine (r = 0.37). Arsenic deposition in biomarkers appeared to be dependent on age; however, it is independent of sex. Principal component analysis showed a direct relationship between dietary intake of arsenic and chronic biomarkers. Nail was proved as the most fitted biomarker of arsenic toxicity by Dunn's post hoc test. Monte Carlo sensitivity analysis and cluster analysis showed that the most significant factor regulating health risk is 'concentration of arsenic' than 'exposure duration', 'body weight' and 'intake rate'. The contribution of arsenic concentration towards calculated health risk was highest in teenagers (45.5-61.2%), followed by adults (47.8-49%) and children (21-27.6%). Regular and sufficient access to arsenic-safe drinking water is an immediate need for the affected population.


Assuntos
Intoxicação por Arsênico , Arsênio , Água Potável , Poluentes Químicos da Água , Adulto , Criança , Adolescente , Humanos , Arsênio/toxicidade , Arsênio/análise , Água Potável/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Intoxicação por Arsênico/epidemiologia , Índia/epidemiologia , Biomarcadores , Abastecimento de Água
8.
Environ Sci Technol ; 56(14): 10072-10083, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35759640

RESUMO

Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently, it was discovered that these include inorganic and organic thioarsenates. Among the latter, dimethylmonothioarsenate (DMMTA) is of particular concern because in mammalian cells, its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity for plants in experiments with Arabidopsis thaliana and indeed observed stronger growth inhibition than with arsenite. DMMTA caused a specific, localized deformation of root epidermal cells. Toxicity mechanisms apparently differ from those of arsenite since no accumulation of reactive oxygen species was observed in DMMTA-exposed root tips. Also, there was no contribution of the phytochelatin pathway to the DMMTA detoxification as indicated by exposure experiments with respective mutants and thiol profiling. RNA-seq analysis found strong transcriptome changes dominated by stress-responsive genes. DMMTA was taken up more efficiently than the methylated oxyarsenate dimethylarsenate and highly mobile within plants as revealed by speciation analysis. Shoots showed clear indications of DMMTA toxicity such as anthocyanin accumulation and a decrease in chlorophyll and carotenoid levels. The toxicity and efficient translocation of DMMTA within plants raise important food safety issues.


Assuntos
Arabidopsis , Arsênio , Arsenitos , Arabidopsis/genética , Arabidopsis/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Ácido Cacodílico , Humanos , Fitoquelatinas , Plantas/metabolismo
9.
J Toxicol Environ Health A ; 85(2): 71-88, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34496719

RESUMO

Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.


Assuntos
Anfípodes/efeitos dos fármacos , Arsênio/toxicidade , Poluentes Químicos da Água/toxicidade , Irrigação Agrícola , Anfípodes/metabolismo , Animais , Antioxidantes/metabolismo , Argentina , Colinesterases/metabolismo , Glutationa/metabolismo , Lagos/química , Dose Letal Mediana
10.
Ecotoxicol Environ Saf ; 229: 113080, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929504

RESUMO

Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of ß-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 µM), ß-pinene (10 µM; ß-10) and As + ß-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (H2O2) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of ß-10 (i.e., As + ß-10 treatments) led to an increase in root and shoot length. Treatment with As + ß-10 resulted in a decline in As accumulation, H2O2 content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + ß-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that ß-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of ß-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.


Assuntos
Arsênio , Oryza , Antioxidantes/metabolismo , Arsênio/toxicidade , Monoterpenos Bicíclicos , Catalase/metabolismo , Peróxido de Hidrogênio , Peroxidação de Lipídeos , Oryza/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo
11.
J Emerg Med ; 63(3): 363-366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36229316

RESUMO

BACKGROUND: Symptomatic arsenic toxicity has not been associated with terracotta pottery despite thousands of years of use in food storage and preparation. We describe a case of chronic arsenic toxicity from undiagnosed pica involving the ingestion of terracotta pots. CASE REPORT: A 49-year-old woman with a history of anemia and abnormal uterine bleeding presented to the Emergency Department complaining of lower extremity pain. She was also noted to have chronic lower extremity paresthesia, constipation, and fatigue. She admitted to ingesting glazed and unglazed terracotta pots for the past 5 years. This unusual craving was thought to be a manifestation of pica in the setting of chronic anemia. The patient was found to have an elevated urinary arsenic concentration of 116 µg/24 h. An abdominal radiograph showed opacifications throughout her bowel, and she received whole bowel irrigation. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Pica is a common behavior in certain populations. Practicing clinicians should be familiar with the complications of pica, including chronic arsenic toxicity and its associated array of nonspecific symptoms.


Assuntos
Arsênio , Pica , Feminino , Humanos , Pessoa de Meia-Idade , Pica/complicações , Intestinos , Ingestão de Alimentos
12.
Bull Environ Contam Toxicol ; 108(3): 423-429, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34170357

RESUMO

The present study assessed the utility of Allium cepa based cyto-genotoxicity bioassays in evaluating the arsenic toxicity and remediation potential of Pteris vittata on contaminated soil of Lakhimpur-Kheri district. Untreated and P. vittata treated soil extracts were used for cyto-genotoxicity tests in A. cepa. Results showed that P. vittata extracted high concentration of arsenic, which ranged from 220 to 1420 mgkg-1 in different soils. Cyto-genotoxic assessment of A. cepa showed that extract of P. vittata treated soil had lower cyto-genotoxic effects as compared to untreated soil. A higher mitotic index (10%) while lower mitotic depression (29%), relative abnormality rate (10%), chromosomal aberrations (1%) and micronuclei (2%) were detected in root meristematic cells of A. cepa exposed to remediated soil extract in comparison to untreated soil. The studies provide a simple, rapid and economic cyto-genotoxicity bioassay tool for evaluating toxicity of contaminated soils of contaminated soils as well as revealed the phytoremdiation property of P. vittata against arsenic toxicity.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Biodegradação Ambiental , Bioensaio , Cebolas , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
13.
Environ Res ; 198: 111184, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894237

RESUMO

Methylation of arsenic compounds in the human body occurs following a series of biochemical reactions in the presence of methyl donor S-adenosylmethionine (SAM) and catalyzed by arsenite methyltransferase (AS3MT). However, the extent and pattern of methylation differs among the arsenic exposed individuals leading to differential susceptibility. The mechanism for such inter-individual difference is enigmatic. In the present case-control study we recruited exposed individuals with and without arsenic induced skin lesion (WSL and WOSL), and an unexposed cohort, each having 120 individuals. Using ELISA, we observed a reduction in SAM levels (p < 0.05) in WSL compared to WOSL. Linear regression analysis revealed a negative correlation between urinary arsenic concentration and SAM concentration between the study groups. qRT-PCR revealed a significant down-regulation (p < 0.01) of key regulatory genes like MTHFR, MTR, MAT2A and MAT2B of SAM biogenesis pathway in WSL cohort. Methylation-specific PCR revealed significant promoter hypermethylation of AS3MT (WSL vs. WOSL: p < 0.01) which resulted in its subsequent transcriptional repression (WSL vs. WOSL: p < 0.001). Linear regression analysis also showed a negative correlation between SAM concentration and percentage of promoter methylation. Taken together, these results indicate that reduction in SAM biogenesis along with a higher utilization of SAM results in a decreased availability of methyl donor. These along with epigenetic down-regulation of AS3MT may be responsible for higher susceptibility in arsenic exposed individuals.


Assuntos
Arsênio , Arsênio/toxicidade , Estudos de Casos e Controles , Humanos , Índia , Metiltransferases/genética , S-Adenosilmetionina
14.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768886

RESUMO

Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson's disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson's disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson's disease.


Assuntos
Metais Pesados/toxicidade , Doenças Neurodegenerativas , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Arsenitos/toxicidade , Cádmio/toxicidade , Linhagem Celular/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/efeitos dos fármacos
15.
J Food Sci Technol ; 58(12): 4795-4804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34629544

RESUMO

Probiotic bacteria are now becoming an effective natural medicine for alleviating many non-communicable lifestyle-related diseases. The present study was conducted to evaluate the antioxidant and antitoxicant properties of a foodborne probiotic Bifidobacterium sp. MKK4 and its rice fermented beverage. The extracts of culture broth, whole cells, fermented beverage, and it's heat-inactivated counterparts subjected to in vitro antioxidant/antiradical assays by DPPH, ABTS, and FRAP analysis. Except for heat-inactivated states, all samples exhibited strong antioxidant activity. In the experimental rat model, both Bifidobacterium sp. MKK4 and its rice fermented beverage significantly prevented arsenic toxicity by inducing a higher level of superoxide dismutase (SOD), catalase (CAT), reduced glutathione and preventing lipid peroxidation (LPO) and DNA fragmentation, and transmembrane mitochondrial potential. Besides, the organism supported systematic protection by improving the level of serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase, lactate dehydrogenase, C-reactive protein, urea, creatinine, and uric acid. The inherent antioxidant nature of the isolate can be exploited as an ingredient in functional food and an effective antidote against arsenic toxicity.

16.
Ecotoxicol Environ Saf ; 206: 111202, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889311

RESUMO

Aim of the current study was to investigate the effect of exogenously inoculated root endophytic fungus, Piriformospora indica, on molecular, biochemical, morphological and physiological parameters of Artemisia annua L. treated with different concentrations (0, 50, 100 and 150 µmol/L) of arsenic (As) stress. As was significantly accumulated in the roots than shoots of P. indica-inoculated plants. As accumulation and immobilization in the roots is directly associated with the successful fungal colonization that restricts most of As as compared to the aerial parts. A total of 4.1, 11.2 and 25.6 mg/kg dry weight of As was accumulated in the roots of inoculated plants supplemented with 50, 100 and 150 µmol/L of As, respectively as shown by atomic absorption spectroscopy. P. indica showed significant tolerance in vitro to As toxicity even at high concentration. Furthermore, flavonoids, artemisinin and overall biomass were significantly increased in inoculated-stressed plants. Superoxide dismutase and peroxidase activities were increased 1.6 and 1.2 fold, respectively under 150 µmol/L stress in P. indica-colonized plants. Similar trend was followed by ascorbate peroxidase, catalase and glutathione reductase. Like that, phenolic acid and phenolic compounds showed a significant increase in colonized plants as compared to their respective control/un-colonize stressed plants. The real-time PCR revealed that transcriptional levels of artemisinin biosynthesis genes, isoprenoids, terpenes, flavonoids biosynthetic pathway genes and signal molecules were prominently enhanced in inoculated stressed plants than un-inoculated stressed plants.


Assuntos
Arseniatos/metabolismo , Artemisia annua/metabolismo , Basidiomycota/metabolismo , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Arseniatos/toxicidade , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Artemisia annua/microbiologia , Artemisininas/metabolismo , Ascorbato Peroxidases/metabolismo , Basidiomycota/crescimento & desenvolvimento , Biomassa , Relação Dose-Resposta a Droga , Modelos Teóricos , Pressão Osmótica/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Transcrição Gênica/efeitos dos fármacos
17.
Ecotoxicology ; 29(5): 613-624, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32385600

RESUMO

Arsenic is ubiquitously present in the aquatic environment. We investigated the acute toxic effects of arsenite [As(III)] exposure on rare minnows (Gobiocypris rarus) in vivo. The 96-h LC50 value for exposure to As(III) was 13.73 mg/L. As(III) bioaccumulation in different tissues was measured using inductively-coupled plasma mass spectrometry, and the extent of As(III) accumulation was, from greatest to least, liver > intestine > gills > muscle > kidney > testis > brain. Histological examination revealed that in As(III)-treated fish, numerous cellular and tissue alterations were present in the gill, liver, and intestine tissues. Moreover, transmission electron microscopy showed ultrastructural alterations in hepatocytes. We also performed transcriptome analyses to investigate As(III)-induced toxicity response in the liver of As(III)-treated fish; various oxidative-related genes were differentially expressed, and their expression levels were further validated using qPCR. This study is one of the many steps we aim to take on the way to promote the rare minnow to an international standard laboratory animal.


Assuntos
Arsenitos/toxicidade , Cyprinidae/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Perfilação da Expressão Gênica , Masculino , Testes de Toxicidade
18.
Drug Chem Toxicol ; 43(1): 1-12, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30208742

RESUMO

The painful invasive chelation therapy makes it challenging to continue the prolonged treatment against arsenic toxicity. Hence, the significance of the present preliminary investigation was to explore a noninvasive treatment strategy against sodium arsenite (As3+) by the use of a hydroethanolic extract of Moringa oleifera (MO) seed. Arsenic treatment (10 mg/kg body-weight) in animals showed significant level of oxidative stress as evidenced by increased serum levels of malondialdehyde (MDA), conjugated dienes (CD) and reduced level of non-protein thiol (NPSH). A significant diminution in the activities of enzymatic antioxidants was noted in As3+-treated rats. As3+ treatment showed a lengthy phase of metestrous in animals followed by significantly diminished ovarian steroidogenesis, increased ovarian follicular degeneration and distortion of uterine tissue histomorphology. In addition, there was a significant depletion of Vitamin-B9 (folate) and B12 following As3+ ingestion. The levels of circulating TNF-α, homocysteine (Hcy), uterine-IL-6, and liver metallothionein (MT-1) were significantly elevated in arsenic treated rats. MO at a dose of 100 mg/kg body-weight could successfully mitigate the uterine ROS generation by maintaining the uterine antioxidant status in As3+- treated rats. This seed extract prevented the deterioration of As3+-mediated ovarian-steroidogenesis and ovarian and uterine histoarchitecture significantly. B9 and B12 levels were also improved following the ingestion of the MO extract in arsenicated animals. Elevation of Hcy, TNF-α and IL-6 was also prevented by this MO seed extract in As3+-treated rats. A further increase of MT-1 level was achieved after MO ingestion in As3+-treated rats. Here, the alleviation of arsenic toxicity might involve via the regulation of the components of S-adenosine methionine (SAM) pool and MT-1.


Assuntos
Arsenitos/toxicidade , Moringa oleifera/química , Extratos Vegetais/farmacologia , Compostos de Sódio/toxicidade , Útero/efeitos dos fármacos , Administração Oral , Animais , Antioxidantes/metabolismo , Feminino , Homocisteína/metabolismo , Metalotioneína/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Sementes , Útero/patologia , Complexo Vitamínico B/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1865(10): 1423-1436, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30031898

RESUMO

Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage.

20.
Plant Cell Environ ; 42(2): 574-590, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30198184

RESUMO

Plants often face combinatorial stresses in their natural environment. Here, arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. Arsenic inhibited growth of both roots and leaves, whereas root growth almost entirely ceased in Hpx. Growth efficiently resumed, and Hpx marker transcripts decreased upon reaeration. Compromised recovery from HpxAs treatment following reaeration indicated some persistent effects of combined stresses despite lower As accumulation. Root glutathione redox potential turned more oxidized in Hpx and most strongly in HpxAs. The more oxidizing root cell redox potential and the lowered glutathione amounts may be conducive to the growth arrest of plants exposed to HpxAs. The stresses elicited changes in elemental and transcriptomic composition. Thus, calcium, magnesium, and phosphorous amounts decreased in rosettes, but the strongest decline was seen for potassium. The reorganized potassium-related transcriptome supports the conclusion that disturbed potassium homeostasis contributes to the growth phenotype. In a converse manner, photosynthesis-related parameters were hardly affected, whereas accumulated carbohydrates under all stresses and anthocyanins under Hpx exclude carbohydrate limitation. The study demonstrates the existence of both synergistic since mutually aggravating effects and antagonistic effects of single and combined stresses.


Assuntos
Arabidopsis/efeitos dos fármacos , Arsênio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Glutationa/metabolismo , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa