RESUMO
Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.
Assuntos
Lesão Pulmonar Aguda , Plantas Medicinais , Pneumonia Viral , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Mitocôndrias/patologia , Ácido gama-Aminobutírico/metabolismo , Pneumonia/metabolismoRESUMO
Plant-derived nanovesicles (PDNVs) have been proposed as a major mechanism for the inter-kingdom interaction and communication, but the effector components enclosed in the vesicles and the mechanisms involved are largely unknown. The plant Artemisia annua is known as an anti-malaria agent that also exhibits a wide range of biological activities including the immunoregulatory and anti-tumor properties with the mechanisms to be further addressed. Here, we isolated and purified the exosome-like particles from A. annua, which were characterized by nano-scaled and membrane-bound shape and hence termed artemisia-derived nanovesicles (ADNVs). Remarkably, the vesicles demonstrated to inhibit tumor growth and boost anti-tumor immunity in a mouse model of lung cancer, primarily through remolding the tumor microenvironment and reprogramming tumor-associated macrophages (TAMs). We identified plant-derived mitochondrial DNA (mtDNA), upon internalized into TAMs via the vesicles, as a major effector molecule to induce the cGAS-STING pathway driving the shift of pro-tumor macrophages to anti-tumor phenotype. Furthermore, our data showed that administration of ADNVs greatly improved the efficacy of PD-L1 inhibitor, a prototypic immune checkpoint inhibitor, in tumor-bearing mice. Together, the present study, for the first time, to our knowledge, unravels an inter-kingdom interaction wherein the medical plant-derived mtDNA, via the nanovesicles, induces the immunostimulatory signaling in mammalian immune cells for resetting anti-tumor immunity and promoting tumor eradication.