Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Small ; 20(26): e2309429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553811

RESUMO

Thermally driven fiber actuators are emerging as promising tools for a range of robotic applications, encompassing soft and wearable robots, muscle function restoration, assistive systems, and physical augmentation. Yet, to realize their full potential in practical applications, several challenges, such as a high operational temperature, incorporation of intrinsic self-sensing capabilities for closed-loop feedback control, and reliance on bulky, intricate actuation systems, must be addressed. Here, an Ag nanoparticles-based twisted and coiled fiber actuator that achieves a high contractile actuation of ≈36% is reported at a considerably low operational temperature of ≈83 °C based on a synergistic effect of constituent fiber elements with low glass transition temperatures. The fiber actuator can monitor its contractile actuation in real-time based on the piezoresistive properties inherent to its Ag-based conductive region, demonstrating its proprioceptive sensing capability. By exploiting this capability, the proprioceptive fiber actuator adeptly maintains its intended contractile behavior, even when faced with unplanned external disturbances. To demonstrate the capabilities of the fiber actuator, this study integrates it into a closed-loop feedback-controlled bionic arm as an artificial muscle, offering fresh perspectives on the future development of intelligent wearable devices and soft robotic systems.

2.
Macromol Rapid Commun ; : e2400370, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873978

RESUMO

Liquid crystalline elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. In this study, multifunctional LCE actuators with strain sensing and joule heating responsivity are developed. LCEs are successfully synthesized using the thiol-ene two-staged michael addition polymerization (TMAP) method. The LCE films are further functionalized via sequential polydopamine (PDA) and silver electroless coating. It is found that the PDA coating enabled the anchoring of the Ag particles to the LCE, thereby enabling the electrical conductivity of the Ag-LCEs (<0.1 Ω cm-1). The studies confirm that the Ag/PDA coated LCEs can sense up to ≈30% strain, sense their own actuation strokes, and actuate at a rate of 1.83% s-1 while lifting a weight ≈50 times its mass in response to a 12 V 2A DC current.

3.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931570

RESUMO

Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO for children with cerebral palsy (CP), the DE-AFO. CP is the most diagnosed neuromotor disorder in the pediatric population. The standard of care for ankle control dysfunction associated with CP, however, is an unmechanized, bulky, and uncomfortable L-shaped conventional AFO. These passive orthoses constrain the ankle's motion and often cause muscle disuse atrophy, skin damage, and adverse neural adaptations. While powered orthoses could enhance natural ankle motion, their reliance on bulky, noisy, and rigid actuators like DC motors limits their acceptability. Our innovation, the DE-AFO, emerged from insights gathered during customer discovery interviews with 185 stakeholders within the AFO ecosystem as part of the NSF I-Corps program. The DE-AFO is a biomimetic robot that employs artificial muscles made from an electro-active polymer called dielectric elastomers (DEs) to assist ankle movements in the sagittal planes. It incorporates a gait phase detection controller to synchronize the artificial muscles with natural gait cycles, mimicking the function of natural ankle muscles. This device is the first of its kind to utilize lightweight, compact, soft, and silent artificial muscles that contract longitudinally, addressing traditional actuated AFOs' limitations by enhancing the orthosis's natural feel, comfort, and acceptability. In this paper, we outline our design approach and describe the three main components of the DE-AFO: the artificial muscle technology, the finite state machine (the gait phase detection system), and its mechanical structure. To verify the feasibility of our design, we theoretically calculated if DE-AFO can provide the necessary ankle moment assistance for children with CP-aligning with moments observed in typically developing children. To this end, we calculated the ankle moment deficit in a child with CP when compared with the normative moment of seven typically developing children. Our results demonstrated that the DE-AFO can provide meaningful ankle moment assistance, providing up to 69% and 100% of the required assistive force during the pre-swing phase and swing period of gait, respectively.


Assuntos
Tornozelo , Paralisia Cerebral , Órtoses do Pé , Robótica , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/reabilitação , Humanos , Criança , Robótica/métodos , Tornozelo/fisiopatologia , Tornozelo/fisiologia , Elastômeros/química , Marcha/fisiologia , Desenho de Equipamento , Fenômenos Biomecânicos
4.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679573

RESUMO

This paper describes the design, construction and experimental testing of a single-joint manipulator arm actuated by pneumatic artificial muscles (PAMs) for the tasks of transporting and sorting work pieces. An antagonistic muscle pair is used in a rotational sense to produce a required torque on a pulley. The concept, operating principle and elementary properties of pneumatic muscle actuators are explained. Different conceptions of the system realizations are analyzed using the morphological-matrix conceptual design framework and top-rated solution was practically realized. A simplified, control-oriented mathematical model of the manipulator arm driven by PAMs and controlled with a proportional control valve is derived. The model is then used for a controller design process. Fluidic muscles have great potential for industrial applications and assembly automation to actuate new types of robots and manipulators. Their characteristics, such as compactness, high strength, high power-to-weight ratio, inherent safety and simplicity, are worthy features for advanced manipulation systems. The experiments were carried out on a practically realized manipulator actuated by a pair of muscle actuators set into an antagonistic configuration. The setup also includes an original solution for the subsystem to add work pieces in the working space of the manipulator.


Assuntos
Modelos Teóricos , Músculos
5.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837159

RESUMO

Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight. To detect strain on the spine and to control the smart textile automatically, a soft knitting sensor that utilizes fluid pressure as a sensing element is used. Based on the soft knitting hydraulic sensor, the robotic exosuit can also feature the ability of monitoring and rectifying human posture. The SARE is validated experimentally with human subjects (N = 4). Through wearing the SARE in stoop lifting, the peak electromyography (EMG) signals of the lumbar erector spinae are reduced by 22.8% ± 12 for lifting 5 kg weights and 27.1% ± 14 in empty-handed conditions. Moreover, the integrated EMG decreased by 34.7% ± 11.8 for lifting 5 kg weights and 36% ± 13.3 in empty-handed conditions. In summary, the artificial muscle wearable device represents an anatomical solution to reduce the risk of muscle strain, metabolic energy cost and back pain associated with repetitive lifting tasks.


Assuntos
Movimento , Postura , Humanos , Eletromiografia , Coluna Vertebral , Dor nas Costas , Remoção , Fenômenos Biomecânicos
6.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590919

RESUMO

A thin McKibben artificial muscle is a pneumatic actuator with an outer diameter of only 1.8 mm. We fabricated a string-shaped actuator called an "active string actuator," which achieves a high contractile displacement by accumulating thin McKibben artificial muscles. To control the displacement, the length of the active string actuator should be estimated. However, this is difficult because bulky and rigid sensors are unsuitable for the sensor element of the active string actuator. Therefore, in this study, we propose a new sensing method for estimating the length of an active string actuator. The proposed sensing system is simple and comprises only three components: a step-index multimode optical fiber, a light emitter, and a light receiver. A step-index multimode optical fiber was combined with the active string actuator, and the length was estimated from the change in the amount of light propagating in the optical fiber when the active string actuator was driven. Fundamental experiments were conducted in this study, and the results demonstrated that the optical fiber sensor value changed with the actuator length. This suggests that it is possible to estimate the displacement of an active string actuator using an optical fiber sensor.


Assuntos
Contração Muscular , Fibras Ópticas , Desenho de Equipamento , Músculos
7.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009902

RESUMO

The hysteretic nonlinearity of pneumatic artificial muscle (PAM) is the main factor that degrades its tracking accuracy. This paper proposes an efficient hysteresis compensation method based on the active modeling control (AMC). Firstly, the Bouc-Wen model is adopted as the reference model to describe the hysteresis of the PAM. Secondly, the modeling errors are introduced into the reference model, and the unscented Kalman filter is used to estimate the state of the system and the modeling errors. Finally, a hysteresis compensation strategy is designed based on AMC. The compensation performances of the nominal controller with without AMC were experimentally tested on a PAM. The experimental results show that the proposed controller is more robust when tracking different types of trajectories. In the transient, both the overshoot and oscillation can be successfully attenuated, and fast convergence is achieved. In the steady-state, the proposed controller is more robust against external disturbances and measurement noise. The proposed controller is effective and robust in hysteresis compensation, thus improving the tracking performance of the PAM.


Assuntos
Músculos
8.
Sensors (Basel) ; 22(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433570

RESUMO

Shortage of labor and increased work of young people are causing problems in terms of care and welfare of a growing proportion of elderly people. This is a looming social problem because people of advanced ages are increasing. Necessary in the fields of care and welfare, pneumatic artificial muscles in actuators of robots are being examined. Pneumatic artificial muscles have a high output per unit of weight, and they are soft, similarly to human muscles. However, in previous research of robots using pneumatic artificial muscles, rigid sensors were often installed at joints and other locations due to the robots' structures. Therefore, we developed a smart actuator that integrates a bending sensor that functions as a human muscle spindle; it can be externally attached to the pneumatic artificial muscle. This paper reports a smart artificial muscle actuator that can sense contraction, which can be applied to developed self-monitoring and robot posture control.


Assuntos
Fusos Musculares , Robótica , Humanos , Idoso , Adolescente , Músculo Esquelético/fisiologia , Desenho de Equipamento
9.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616867

RESUMO

Significant progress in healthcare fields around the world has inspired us to develop a wearable strain−temperature sensor that can monitor biomedical signals in daily life. This novel self-powered temperature−strain dual-parameter sensor comprises a mechano-electrochemical harvester (MEH) and a thermally responsive artificial muscle (TAM). The MEHTAM system generates electricity from strain and thermal fluctuations. In addition, the sensor is comfortable to wear, owing to its stretchability (>100%), softness (<3 MPa), and one-dimensional fibers (diameter 230 µm). The MEH induces a change in the electrochemical capacitance, resulting in an electrical signal under applied strain (34 µA/m) and stress (20 µA/(m·MPa)). The TAM can be used as a mechanical temperature sensor, because the tensile stroke responds linearly to changes in temperature. As the harvester and artificial muscle are combined, the MEHTAM system generates electricity, owing to external and internal mechanical stimuli caused by muscle contractions as a response to temperature changes. The MEHTAM system that we have developed­a self-powered, strain−temperature dual-parameter sensor that is soft, stretchable, and fiber-shaped­is an interesting candidate for the production of comfortable, wearable, dual-parameter sensors.


Assuntos
Eletricidade , Músculos , Temperatura , Capacitância Elétrica , Contração Muscular
10.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563372

RESUMO

To improve the energy efficiency and driving performance of ionic electroactive polymer actuators, we propose inserting insulating layers of 170 nm hexagonal boron nitride (h-BN) particles between the ionic polymer membrane and electrodes. In experiments, actuators exhibited better capacitance (4.020 × 10-1 F), displacement (6.01 mm), and curvature (35.59 m-1) with such layers than without them. The excellent insulating properties and uniform morphology of the layers reduced the interfacial resistance, and the ion conductivity (0.071 S m-1) within the ionic polymer improved significantly. Durability was enhanced because the h-BN layer is chemically and thermally stable and efficiently blocks heat diffusion and ion hydrate evaporation during operation. The results demonstrate a close relationship between the capacitance and driving performance of actuators. A gripper prepared from the proposed ionic electroactive polymer actuator can stably hold an object even under strong external vibration and fast or slow movement.


Assuntos
Compostos de Boro , Polímeros , Compostos de Boro/química , Íons , Músculos , Polímeros/química
11.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592596

RESUMO

Wearable electronics featuring conformal attachment, sensitive perception and intellectual signal processing have made significant progress in recent years. However, when compared with living organisms, artificial sensory devices showed undeniable bulky shape, poor adaptability, and large energy consumption. To make up for the deficiencies, biological examples provide inspirations of novel designs and practical applications. In the field of biomimetics, nanomaterials from nanoparticles to layered two-dimensional materials are actively involved due to their outstanding physicochemical properties and nanoscale configurability. This review focuses on nanomaterials related to wearable electronics through bioinspired approaches on three different levels, interfacial packaging, sensory structure, and signal processing, which comprehensively guided recent progress of wearable devices in leveraging both nanomaterial superiorities and biorealistic functionalities. In addition, opinions on potential development trend are proposed aiming at implementing bioinspired electronics in multifunctional portable sensors, health monitoring, and intelligent prosthetics.


Assuntos
Materiais Biomiméticos , Eletrônica , Nanoestruturas , Dispositivos Eletrônicos Vestíveis , Humanos
12.
Proc Natl Acad Sci U S A ; 114(50): 13132-13137, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180416

RESUMO

Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.


Assuntos
Músculo Esquelético/fisiologia , Papel , Robótica/métodos , Animais , Membros Artificiais , Fenômenos Biomecânicos , Biomimética/economia , Biomimética/métodos , Humanos , Hidrodinâmica , Robótica/economia
13.
Nano Lett ; 19(6): 3933-3938, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31037942

RESUMO

DNA has been well-known for its applications in programmable self-assembly of materials. Nonetheless, utility of DNA origami, which offers more opportunity to realize complicated operations, has been very limited. Here we report self-assembly of a biomolecular motor system, microtubule-kinesin mediated by DNA origami nanostructures. We demonstrate that a rodlike DNA origami motif facilitates self-assembly of microtubules into asters. A smooth-muscle like molecular contraction system has also been realized using the DNA origami in which self-assembled microtubules exhibited fast and dynamic contraction in the presence of kinesins through an energy dissipative process. This work provides potential nanotechnological applications of DNA and biomolecular motor proteins.


Assuntos
DNA/química , Cinesinas/química , Microtúbulos/química , Nanoestruturas/química , Microtúbulos/ultraestrutura , Músculo Liso/química , Músculo Liso/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia , Conformação de Ácido Nucleico
14.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947872

RESUMO

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


Assuntos
Órgãos Artificiais , Materiais Biomiméticos/química , Polímeros/química , Elastômeros/química , Luz , Cristais Líquidos/química , Impressão Tridimensional , Robótica
15.
Small ; 14(38): e1801883, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30152590

RESUMO

Artificial muscles are reported in which reduced graphene oxide (rGO) is trapped in the helical corridors of a carbon nanotube (CNT) yarn. When electrochemically driven in aqueous electrolytes, these coiled CNT/rGO yarn muscles can contract by 8.1%, which is over six times that of the previous results for CNT yarn muscles driven in an inorganic electrolyte (1.3%). They can contract to provide a final stress of over 14 MPa, which is about 40 times that of natural muscles. The hybrid yarn muscle shows a unique catch state, in which 95% of the contraction is retained for 1000 s following charging and subsequent disconnection from the power supply. Hence, they are unlike thermal muscles and natural muscles, which need to consume energy to maintain contraction. Additionally, these muscles can be reversibly cycled while lifting heavy loads.

16.
Nano Lett ; 17(8): 4774-4780, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28737931

RESUMO

Nanoporous metallic actuators for artificial muscle applications are distinguished by combining the low operating voltage, which is otherwise reserved for polymer-based actuators with interesting values of strain amplitude, strength, and stiffness that are comparable of those of piezoceramics. We report a nanoporous metal actuator with enhanced strain amplitude and accelerated switching. Our 3D macroscopic metallic muscle has semiordered and hierarchical nanoporous structure, in which µm-sized tubes align perpendicular with the sample surface, while nm-sized ligaments consist of the tube walls. This nanoarchitecture combines channels for fast ion transportation with large surface area for charge storage and strain generation. The result is a record reversible strain amplitude of 1.59% with a strain rate of 8.83 × 10-6 s-1 in the field of metallic based actuators. A passive hydroxide layer is self-grown on the metal surface, which not only contributes a supercapacitive layer, but also stabilizes the nanoporous structure against coarsening, which guarantees sustainable actuation beyond ten-thousand cycles.

17.
Angew Chem Int Ed Engl ; 56(45): 14183-14186, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28914480

RESUMO

Electrochemical actuation of conducting polymers usually requires a direct connection to an electric power supply. In this contribution, we suggest to overcome this issue by using the concept of bipolar electrochemistry. This allows changing the oxidation state of the polymer in a gradual and wireless way. Free-standing polypyrrole films were synthesized with an intrinsic morphological asymmetry of their two faces in order to form a bilayer structure. Immersing such objects in an electrolyte solution and exposing them to a potential gradient leads to the asymmetric oxidation/reduction of the polymer, resulting in differential shrinking and swelling along the main axis. This additional asymmetry is responsible for a structural deformation. Optimization allowed highly efficient bending, which is expected to open up completely new directions in the field of actuation due to the wireless mode of action.

18.
J Artif Organs ; 18(4): 377-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253252

RESUMO

Dynamic cardiomyoplasty is a surgical treatment that utilizes the patient's skeletal muscle to support circulation. To overcome the limitations of autologous skeletal muscles in dynamic cardiomyoplasty, we studied the use of a wrapped-type cardiac supporting device using pneumatic muscles. Four straight rubber muscles (Fluidic Muscle, FESTO, Esslingen, Germany) were used and connected to pressure sensors, solenoid valves, a controller and an air compressor. The driving force was compressed air. A proportional-integral-derivative system was employed to control the device movement. An overflow-type mock circulation system was used to analyze the power and the controllability of this new device. The device worked powerfully with pumped flow against afterload of 88 mmHg, and the beating rate and contraction/dilatation time were properly controlled using simple software. Maximum pressure inside the ventricle and maximum output were 187 mmHg and 546.5 ml/min, respectively, in the setting of 50 beats per minute, a contraction/dilatation ratio of 1:2, a preload of 18 mmHg, and an afterload of 88 mmHg. By changing proportional gain, contraction speed could be modulated. This study showed the efficacy and feasibility of a pneumatic muscle for use in a cardiac supporting device.


Assuntos
Cardiomioplastia/instrumentação , Borracha , Ar Comprimido , Humanos , Modelos Cardiovasculares
19.
Biomimetics (Basel) ; 9(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534862

RESUMO

Wearable mechatronics for powered orthoses, exoskeletons and prostheses require improved soft actuation systems acting as 'artificial muscles' that are capable of large strains, high stresses, fast response and self-sensing and that show electrically safe operation, low specific weight and large compliance. Among the diversity of soft actuation technologies under investigation, pneumatic devices have been the focus, during the last couple of decades, of renewed interest as an intrinsically soft artificial muscle technology, due to technological advances stimulated by applications in soft robotics. As of today, quite a few solutions are available to endow a pneumatic soft device with linear actuation and self-sensing ability, while also easily achieving these features with off-the-shelf materials and low-cost fabrication processes. Here, we describe a simple process to make self-sensing pneumatic actuators, which may be used as 'inverse artificial muscles', as, upon pressurisation, they elongate instead of contracting. They are made of an elastomeric tube surrounded by a plastic coil, which constrains radial expansions. As a novelty relative to the state of the art, the self-sensing ability was obtained with a piezoresistive stretch sensor shaped as a conductive elastomeric body along the tube's central axis. Moreover, we detail, also by means of video clips, a step-by-step manufacturing process, which uses off-the-shelf materials and simple procedures, so as to facilitate reproducibility.

20.
Biomimetics (Basel) ; 9(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392156

RESUMO

Loss of an upper limb exerts a negative influence on an individual's ability to perform their activities of daily living (ADLs), reducing quality of life and self-esteem. A prosthesis capable of performing basic ADLs functions has the capability of restoring independence and autonomy to amputees. However, current technologies present in robotic prostheses are based on rigid actuators with several drawbacks, such as high weight and low compliance. Recent advances in robotics have allowed for the development of flexible actuators and artificial muscles to overcome the limitations of rigid actuators. Dielectric elastomer actuators (DEAs) consist of a thin elastomer membrane arranged between two compliant electrodes capable of changing dimensions when stimulated with an electrical potential difference. In this work, we present the design and testing of a finger prosthesis driven by two DEAs arranged as agonist-antagonist pairs as artificial muscles. The soft actuators are designed as fiber-constrained dielectric elastomers (FCDE), enabling displacement in just one direction as natural muscles. The finger prosthesis was designed and modeled to show bend movement using just one pair of DEAs and was made of PLA in an FDM 3D printer to be lightweight. The experimental results show great agreement with the proposed model and indicate that the proposed finger prosthesis is promising in overcoming the limitations of the current rigid based actuators.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa