RESUMO
We are in a modern biodiversity crisis that will restructure community compositions and ecological functions globally. Large mammals, important contributors to ecosystem function, have been affected directly by purposeful extermination and indirectly by climate and land-use changes, yet functional turnover is rarely assessed on a global scale using metrics based on functional traits. Using ecometrics, the study of functional trait distributions and functional turnover, we examine the relationship between vegetation cover and locomotor traits for artiodactyl and carnivoran communities. We show that the ability to detect a functional relationship is strengthened when locomotor traits of both primary consumers (artiodactyls, n = 157 species) and secondary consumers (carnivorans, n = 138 species) are combined into one trophically integrated ecometric model. Overall, locomotor traits of 81% of communities accurately estimate vegetation cover, establishing the advantage of trophically integrated ecometric models over single-group models (58 to 65% correct). We develop an innovative approach within the ecometrics framework, using ecometric anomalies to evaluate mismatches in model estimates and observed values and provide more nuance for understanding relationships between functional traits and vegetation cover. We apply our integrated model to five paleontological sites to illustrate mismatches in the past and today and to demonstrate the utility of the model for paleovegetation interpretations. Observed changes in community traits and their associated vegetations across space and over time demonstrate the strong, rapid effect of environmental filtering on community traits. Ultimately, our trophically integrated ecometric model captures the cascading interactions between taxa, traits, and changing environments.
Assuntos
Biodiversidade , Ecossistema , Animais , Mamíferos , ClimaRESUMO
In this study, we aimed to achieve three objectives: (1) to precisely characterize the body plans of Elephantidae and other large herbivorous mammals; (2) based on this analysis, to determine whether the body plans of the extinct woolly mammoth (Mammuthus primigenius) and steppe mammoth (M. trogontherii) differ from those of modern-day Elephantidae: the Asian elephant (Elephas maximus), the African bush (Loxodonta africana), and forest (L. cyclotis) elephants; (3) to analyze how the body plans have changed in extant perissodactyls and proboscideans compared with their Paleogene ancestors. To accomplish this, we studied mammoth skeletons from the collections of Russian museums and compared this data with a large number of skeletons of extant elephantids, odd-toed, and even-toed ungulates, as well as their extinct relatives. We showed that three genera of Elephantidae are characterized by a homogeneous body plan, which is markedly different from other large herbivores. Elephantids break the interrelationship, that exists in artiodactyls and perissodactyls, between the total length of the head and neck on one side and the limb's segments on the other. Their limbs are very tall (inferior in this regard among large ungulates only to the giraffe), and, contrary to the other large herbivorous mammals, elongated due to the length of the proximal segments. This allows them to effectively utilize the principle of inverted pendulum (straight-legged walking) in locomotion. The biggest differences in the body plan of mammoths compared with extant elephants are a markedly larger pelvis, elongated fore- and hindlimbs (due to the increased relative length of their proximal segments), and different proportions of the skull. The body plans of plesiomorphic Paleogene proboscideans and perissodactyls differed markedly from their descendants in every body part; these differences are related, on the one hand, to the allometric growth, and on the other hand, to the advancement of the locomotor apparatus in the course of their evolution. The most notable difference in the body plan between Paleogene proboscidean Moeritherium and extant Elephantidae is the ~2-fold increase in relative limb height.
RESUMO
BACKGROUND: Viruses within the γ-herpesviruses subfamily include the causative agents of Malignant Catarrhal Fever (MCF) in several species of the order Artiodactyla. MCF is a usually fatal lymphoproliferative disease affecting non-adapted host species. In adapted host species these viruses become latent and recrudesce and transmit during times of stress or immunosuppression. The undetected presence of MCF-causing viruses (MCFVs) is a risk to non-adapted hosts, especially within non-sympatric zoological collections. This study investigated the presence of MCFVs in six different zoological collections in the UK, to evaluate the presence of subclinical/latent MCFVs in carrier animals. METHODS: One-hundred and thirty eight samples belonging to 54 different species of Artiodactyla were tested by Consensus Pan-herpes PCR. The positive samples were sequenced and subjected to phylogenetic analyses to understand their own evolutionary relationships and those with their hosts. RESULTS: Twenty-five samples from 18 different species tested positive. All viruses but one clustered in the γ-herpesvirus family and within the Macavirus as well as the non-Macavirus groups (caprinae and alcelaphinae/hippotraginae clusters, respectively). A strong association between virus and host species was evident in the Macavirus group and clustering within the caprinae group indicated potential pathogenicity. CONCLUSION: This study shows the presence of pathogenic and non-pathogenic MCFVs, as well as other γ-herpesviruses, in Artiodactyla species of conservation importance and allowed the identification of new herpesviruses in some non-adapted species.
Assuntos
Artiodáctilos , Herpesviridae , Febre Catarral Maligna , Animais , Bovinos , Filogenia , Herpesviridae/genética , Ruminantes , Febre Catarral Maligna/patologiaRESUMO
Comparisons of wild and domestic populations have established brain reduction as one of the most consistent patterns correlated with domestication. Over a century of scholarly work has been devoted to this subject, and yet, new data continue to foster its debate. Current arguments, both for and against the validity of brain reduction occurring in domestic taxa, have repeatedly cited a small set of reviews on this subject. The original works, their sampling, methodological details, and nuances of results that would be key to establishing validity, particularly in light of new data, have not been investigated. To facilitate and encourage a more informed discussion, we present a comprehensive review of original brain reduction literature for four mammalian clades: Artiodactyla, Perissodactyla, Carnivora, and Glires. Among these are studies that generated the most cited brain reduction values in modern domestication literature. In doing so, we provide a fairer stage for the critique of traits associated with domestication. We conclude that while brain reduction magnitudes may contain error, empirical data collectively support the reduction in brain size and cranial capacity for domestic forms.
Assuntos
Carnívoros , Domesticação , Animais , Encéfalo , Crânio , FenótipoRESUMO
In this paper, we develop and validate an osteometry-based mechanistic approach to calculation of available range of motion (aROM) in presacral intervertebral joints in sagittal bending (SB), lateral bending (LB), and axial rotation (AR). Our basic assumption was the existence of a mechanistic interrelation between the geometry of zygapophysial articular facets and aROM. Trigonometric formulae are developed for aROM calculation, of which the general principle is that the angle of rotation is given by the ratio of the arc length of motion to the radius of this arc. We tested a number of alternative formulae against available in vitro data to identify the most suitable geometric ratios and coefficients for accurate calculation. aROM values calculated with the developed formulae show significant correlation with in vitro data in SB, LB, and AR (Pearson r = 0.900) in the reference mammals (man, sheep, pig, cow). It was found that separate formulae for different zygapophysial facet types (radial (Rf), tangential (Tf), radial with a lock (RfL)) give significantly greater accuracy in aROM calculation than the formulae for the presacral spine as a whole and greater accuracy than the separate formulae for different spine regions (cervical, thoracic, lumbar). The advantage of the facet-specific formulae over the region-specific ones shows that the facet type is a more reliable indicator of the spine mobility than the presence or absence of ribs. The greatest gain in calculation accuracy with the facet-specific formulae is characteristic in AR aROM. The most important theoretical outcome is that the evolutionary differentiation of the zygapophysial facets in mammals, that is the emergence of Tf joints in the rib cage area of the spine, was more likely associated with the development of AR rather than with SB mobility and, hence, with cornering rather than with forward galloping. The AR aROM can be calculated with the formulae common for man, sheep, pig, and cow. However, the SB aROM of the human spine is best calculated with different coefficient values in the formulae than those for studied artiodactyls. The most suitable coefficient values indicate that the zygapophysial articular facets tend to slide past each other to a greater extent in the human thoracolumbar spine rather than in artiodactyls. Due to this, artiodactyls retain relatively greater facet overlap in extremely flexed and extremely extended spine positions, which may be more crucial for their quadrupedal gallop than for human bipedal locomotion. The SB, LB, and AR aROMs are quite separate in respect of the formulae structure in the cervical region (radial facet type). However, throughout the thoracolumbar spine (tangential and radial with lock facets), the formulae for LB and AR are basically similar differing in coefficient values only. This means that, in the thoracolumbar spine, the greater the LB aROM, the greater the AR aROM, and vice versa. The approach developed promises a wide osteological screening of extant and extinct mammals to study the sex, age, geographical variations, and disorders.
Assuntos
Disco Intervertebral/fisiologia , Amplitude de Movimento Articular/fisiologia , Coluna Vertebral/fisiologia , Articulação Zigapofisária/fisiologia , Animais , Bovinos , Humanos , Rotação , Ovinos , Suínos , Suporte de Carga/fisiologiaRESUMO
Ungulates (antelopes, deer and relatives) have some of the most diverse social systems among mammals. To understand the evolution of ungulate social organization, Jarman (1974) proposed an ecological scenario of how distribution of resources, habitat and feeding style may have influenced social organization. Although Jarman's scenario makes intuitive sense and remains a textbook example of social evolution, it has not been scrutinized using modern phylogenetic comparative methods. Here we use 230 ungulate species from ten families to test Jarman's hypotheses using phylogenetic analyses. Consistent with Jarman's proposition, both habitat and feeding style predict group size, since grazing ungulates typically live in open habitats and form large herds. Group size, in turn, has a knock-on effect on mating systems and sexual size dimorphism, since ungulates that live in large herds exhibit polygamy and extensive sexual size dimorphism. Phylogenetic confirmatory path analyses suggest that evolutionary changes in habitat type, feeding style and body size directly (or indirectly) induce shifts in social organization. Taken together, these phylogenetic comparative analyses confirm Jarman's conjectures, although they also uncover novel relationships between ecology and social organization. Further studies are needed to explore the relevance of Jarman (1974) scenario for mammals beyond ungulates.
Assuntos
Tamanho Corporal , Ecossistema , Filogenia , Ruminantes/psicologia , Comportamento Social , Animais , Comportamento Alimentar , Feminino , Masculino , Caracteres Sexuais , Comportamento Sexual AnimalRESUMO
The following mammal assemblage was identified among the materials collected in 2020 from the Pleistocene of the Lang Trang cave (northern Vietnam): the primates Pongo sp., Trachypithecus sp., Macaca cf. nemestrina (Linnaeus, 1766), and Macaca sp.; the carnivorans Arctonyx collaris rostratus Matthew et Granger, 1923 and Panthera sp.; the chiropteran Ia io Thomas, 1902; the rodent Hystrix kiangsenensis Wang, 1931; the proboscidean Elephas sp.; the perissodactyls Tapirus indicus (Desmarest, 1819) and Dicerorhinus sumatrensis (Fischer, 1814); the artiodactyls Sus scrofa Linnaeus, 1758, S. barbatus Müller, 1838, Tragulus kanchil (Raffles, 1821), Hydropotes inermis Swinhoe, 1870, Muntiacus muntjak (Zimmermann, 1780), Axis porcinus (Zimmermann, 1780), Rusa unicolor (Kerr, 1792), and Capricornis sumatraensis (Bechstein, 1799). I. io, S. barbatus, T. kanchil, H. inermis, and A. porcinus were detected in the Lang Trang fauna for the first time. The mammal assemblage is dominated by inhabitants of tropical forests (from lowlands to mountains), subtropical forms are also present.
Assuntos
Artiodáctilos/anatomia & histologia , Fósseis/anatomia & histologia , Mamíferos/anatomia & histologia , Paleontologia , Animais , Cavernas , Quirópteros/anatomia & histologia , Roedores/anatomia & histologia , VietnãRESUMO
Previous studies to understand the evolution of interspecific variation in mammalian social organization (SO; composition of social units) produced inconsistent results, possibly by ignoring intraspecific variation. Here we present systematic data on SO in artiodactyl populations, coding SO as solitary, pair-living, group-living, sex-specific or variable (different kinds of SOs in the same population). We found that 62% of 245 populations and 83% of species (83/100) exhibited variable SO. Using Bayesian phylogenetic mixed-effects models, we simultaneously tested whether research effort, habitat, sexual dimorphism, breeding seasonality or body size predicted the likelihood of different SOs and inferred the ancestral SO. Body size and sexual dimorphism were strongly associated with different SOs. Contingent on the small body size (737 g) and putative sexual monomorphism of the earliest fossil artiodactyl, the ancestral SO was most likely to be pair-living (probability = 0.76, 95% CI = 0-1), followed by variable (p = 0.19, 95% CI = 0-0.99). However, at body size values typical of extant species, variable SO becomes the dominant form (p = 0.74, 95% CI = 0.18-1.00). Distinguishing different kinds of 'variable' highlights transitions from SOs involving pair-living to SOs involving solitary and/or group-living with increasing body size and dimorphism. Our results support the assumption that ancestral artiodactyl was pair-living and highlight the ubiquity of intraspecific variation in SO.
Assuntos
Artiodáctilos/fisiologia , Comportamento Animal , Evolução Biológica , Animais , Teorema de Bayes , Feminino , Masculino , Filogenia , Caracteres SexuaisRESUMO
Ethmoturbinates, nasoturbinates, and maxilloturbinates are well developed in the narial tract of land-dwelling artiodactyls ancestral to whales, but these are greatly reduced or lost entirely in modern whales. Aegyptocetus tarfa is a semiaquatic protocetid from the middle Eocene of Egypt. Computed axial tomography scans of the skull show that A. tarfa retained all three sets of turbinates like a land mammal. It is intermediate between terrestrial artiodactyls and aquatic whales in reduction of the turbinates. Ethmoturbinates in A. tarfa have 26% of the surface area expected for an artiodactyl. These have an olfactory function and indicate that early whales retained a sense of smell in the transition from land to sea. Maxilloturbinates in A. tarfa have 6% of the surface area expected for an artiodactyl. These have a respiratory function and their markedly reduced size suggests that rapid inhalation and exhalation was already more important than warming and humidifying air, in contrast to extant land mammals. Finally, the maxilloturbinates of A. tarfa, although greatly reduced, still show some degree of similarity to those of artiodactyls, supporting the phylogenetic affinity of cetaceans and artiodactyls based on morphological and molecular evidence.
Assuntos
Evolução Biológica , Crânio/anatomia & histologia , Conchas Nasais/anatomia & histologia , Baleias/anatomia & histologia , Animais , Fósseis , FilogeniaRESUMO
PURPOSE: To investigate the relationship between phylogeny and amount of shade in a species' habitat regarding the presence or absence of an iridal granula iridica (GI) in a large sample of Artiodactyl and Perissodactyl clades and using online resources. METHODS: The Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW) archives were searched for glass slide material from Artiodactyl (even-toed) and Perissodactyl (odd-toed) ungulates. The slides were examined, and the presence or absence of the GI was noted. The phylogenetic tree of the ungulate species was inferred using TimeTree (http://www.timetree.org), and the habitat data are derived from Animal Diversity Web (https://animaldiversity.org/). We assessed the probability of the presence of GI occurring given the amount of shade in a species' environment using phylogenetic logistic regression. RESULTS: Forty-eight artiodactyl species were able to be evaluated and tabulated. Nine perissodactyl species were able to be evaluated. The phylogenetic logistic regression showed that the probability of GI presence was lower in artiodactyl species that inhabited shaded environments (ßshaded = -1.774). Arctiodacyl species inhabiting a nonshaded environment were slightly more probable to have the GI present (ßnonshaded = 0.023), with species inhabitating ambiguously shaded environments having a high probability of GI presence (ßambiguous = 2.214). CONCLUSIONS: Our results suggest that the GI may be a common morphological feature to shade the pupil in nonshaded environments, and, in its absence, increase the amount of light reaching the retina to improve vision in shaded environments for hooved mammals. Further research on the functional optics of the GI and studies that include additional ungulate species would further elucidate phylogenetic and ecological factors influencing the occurrence of GI in hooved mammals.
Assuntos
Iris/anatomia & histologia , Ruminantes/anatomia & histologia , Animais , Ecossistema , Filogenia , Ruminantes/classificação , Ruminantes/fisiologia , Especificidade da EspécieRESUMO
Cetartiodactyla comprises one of the most diverse mammal radiations. Currently, 23 families, 131 genera and more than 330 species are recognized. Several studies have been trying to resolve its phylogenetic relationships. The most comprehensive dated phylogenetic hypothesis available includes only 55% of the extant species, precluding a clear understanding of ecological and evolutionary patterns in Cetartiodactyla. Here, we gathered all mitochondrial genetic data available in GenBank to build a robust Cetartiodactyla calibrated phylogenetic tree using 21 fossil calibration points. We found mitogenomic data for 225 species and included other 93 species from which there was at least one mitochondrial gene available. Using a Bayesian approach, we generated a dated tree comprising 90% of the extant Cetartiodactyla species (nâ¯=â¯318). The major lineages showed robust support and families divergence times are congruent with the available fossil evidence and with previously published phylogenetic hypotheses. By making available a dated phylogeny with extensively sampled clades, we expect to foster future studies on the origin, tempo and mode of Cetartiodactyla diversification.
Assuntos
Mamíferos/classificação , Filogenia , Animais , Teorema de Bayes , Biodiversidade , Calibragem , Fósseis , Mamíferos/genética , Especificidade da Espécie , Fatores de TempoRESUMO
Understanding factors that facilitate interspecific pathogen transmission is a central issue for conservation, agriculture, and human health. Past work showed that host phylogenetic relatedness and geographical proximity can increase cross-species transmission, but further work is needed to examine the importance of host traits, and species interactions such as predation, in determining the degree to which parasites are shared between hosts. Here we consider the factors that predict patterns of parasite sharing across a diverse assemblage of 116 wild ungulates (i.e., hoofed mammals in the Artiodactyla and Perissodactyla) and nearly 900 species of micro- and macroparasites, controlling for differences in total parasite richness and host sampling effort. We also consider the effects of trophic links on parasite sharing between ungulates and carnivores. We tested for the relative influence of range overlap, phylogenetic distance, body mass, and ecological dissimilarity (i.e., the distance separating species in a Euclidean distance matrix based on standardized traits) on parasite sharing. We also tested for the effects of variation in study effort as a potential source of bias in our data, and tested whether carnivores reported to feed on ungulates have more ungulate parasites than those that use other resources. As in other groups, geographical range overlap and phylogenetic similarity predicted greater parasite community similarity in ungulates. Ecological dissimilarity showed a weak negative relationship with parasite sharing. Counter to our expectations, differences, not similarity, in host body mass predicted greater parasite sharing between pairs of ungulate hosts. Pairs of well-studied host species showed higher overlap than poorly studied species, although including sampling effort did not reduce the importance of biological traits in our models. Finally, carnivores that feed on ungulates harboured a greater richness of ungulate helminths. Overall, we show that the factors that predict parasite sharing in wild ungulates are similar to those known for other mammal groups, and demonstrate the importance of controlling for heterogeneity in host sampling effort in future analyses of parasite sharing. We also show that ecological interactions, in this case trophic links via predation, can allow sharing of some parasite species among distantly related host species.
Assuntos
Carnívoros , Helmintos , Parasitos , Animais , Interações Hospedeiro-Parasita , Humanos , FilogeniaRESUMO
Mammalian milk/colostrum usually contains oligosaccharides along with the predominant disaccharide lactose. It has been found that the number and identity of these milk oligosaccharides varies among mammalian species. Oligosaccharides predominate over lactose in the milk/colostrum of Arctoidea species (Carnivora), whereas lactose predominates over milk oligosaccharides in Artiodactyla including cow, sheep, goat, camel, reindeer and pig. To clarify whether heterogeneity of a variety of milk oligosaccharides is found within other species of Artiodactyla, they were studied in the milk of giraffe, sitatunga, deer and water buffalo. The following oligosaccharides were found: Neu5Ac(α2-3)[GalNAc(ß1-4)]Gal(ß1-4)Glc (GM2 tetrasaccharide), and Gal(α1-3)Gal(ß1-4)Glc (isoglobotriose) in giraffe milk; Neu5Ac(α2-3)Gal(ß1-4)Glc (3'-SL), Neu5Ac(α2-6)Gal(ß1-4)Glc (6'-SL), Gal(α1-4)Gal(ß1-4)Glc (globotriose) and isoglobotriose in sitatunga colostrum; Gal(ß1-3)Gal(ß1-4)Glc (3'-GL), Gal(ß1-6)Gal(ß1-4)Glc (6'-GL), isoglobotriose, Gal(ß1-4)GlcNAc(ß1-3)Gal(ß1-4)Glc (lacto-N-neotetraose, LNnT), Gal(ß1-4)Glc-3'-O-SO3 (3'-O-lactose sulphate) in deer milk; 3'-GL, isoglobotriose and Gal(ß1-3)Gal(ß1-3)Gal(ß1-4)Glc (3',3â³-digalactosyllactose, DGL) in water buffalo colostrum. Thus it was shown that the milk oligosaccharides are heterogeneous among these Artiodactyla species.
Assuntos
Búfalos/metabolismo , Cervos/metabolismo , Girafas/metabolismo , Leite/química , Oligossacarídeos/química , Ruminantes/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Colostro/química , Feminino , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
When comparative neuromorphological studies are extended into evolutionary contexts, traits of interest are often linked to diversification patterns. Features demonstrably associated with increases in diversification rates and the infiltration or occupation of novel niche spaces are often termed "key innovations." Within the past decade, phylogenetically informed methods have been developed to test key innovation hypotheses and evaluate the influence these traits have had in shaping modern faunas. This is primarily accomplished by estimating state-dependent speciation and extinction rates. These methods have important caveats and guidelines related to both calculation and interpretation, which are necessary to understand in cases of discrete (qualitative) character analysis, as can be common when studying the evolution of neuromorphology. In such studies, inclusion of additional characters, acknowledgement of character codistribution, and addition of sister clade comparison should be explored to ensure model accuracy. Even so, phylogenies provide a survivor-only examination of character evolution, and paleontological contexts may be necessary to replicate and confirm results. Here, I review these issues in the context of selective brain cooling - a neurovascular-mediated osmoregulatory physiology that dampens hypothalamic responses to heat stress and reduces evaporative water loss in large-bodied mammals. This binary character provides an example of the interplay between sample size, evenness, and character codistribution. Moreover, it allows for an opportunity to compare phylogenetically constrained results with paleontological data, augmenting survivor-only analyses with observable extinction patterns. This trait- dependent diversification example indicates that selective brain cooling is significantly associated with the generation of modern large-mammal faunas. Importantly, paleontological data validate phylogenetic patterns and demonstrate how suites of characters worked in concert to establish the large-mammal communities of today.
Assuntos
Regulação da Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Fósseis , Osmorregulação/fisiologia , Filogenia , Animais , Encéfalo/irrigação sanguíneaRESUMO
Illuminating the ecological and evolutionary dynamics of parasites is one of the most pressing issues facing modern science, and is critical for basic science, the global economy, and human health. Extremely important to this effort are data on the disease-causing organisms of wild animal hosts (including viruses, bacteria, protozoa, helminths, arthropods, and fungi). Here we present an updated version of the Global Mammal Parasite Database, a database of the parasites of wild ungulates (artiodactyls and perissodactyls), carnivores, and primates, and make it available for download as complete flat files. The updated database has more than 24,000 entries in the main data file alone, representing data from over 2700 literature sources. We include data on sampling method and sample sizes when reported, as well as both "reported" and "corrected" (i.e., standardized) binomials for each host and parasite species. Also included are current higher taxonomies and data on transmission modes used by the majority of species of parasites in the database. In the associated metadata we describe the methods used to identify sources and extract data from the primary literature, how entries were checked for errors, methods used to georeference entries, and how host and parasite taxonomies were standardized across the database. We also provide definitions of the data fields in each of the four files that users can download.
Assuntos
Sistemas de Gerenciamento de Base de Dados , Mamíferos/parasitologia , Parasitos , Animais , Animais Selvagens , Carnívoros , Helmintos , Interações Hospedeiro-Parasita , HumanosRESUMO
The composition of major nutrients and fatty acids of the milk of three species, red hartebeest, Southern reedbuck and warthog, and milk fatty acids of giraffe, that have not been published before, are reported, and together with the same parameters of 11 species previously published, were incorporated in a phylogenetic comparison. Unique properties of milk composition have been observed. Southern reedbuck milk seems to have a complex casein composition, similar to that of sheep. Milk composition varies between species. Although some differences may be ascribed to biological condition, such as stage of lactation, or ecological factors, such as availability of certain nutrients, the contribution by evolutionary history is not well documented and the emphasis is usually on the composition of the macro nutrients. Phylogenetic comparisons often lack representatives of multiple species of taxonomic groups and sub-groups. To date phylogenetic comparisons of milk composition have been carried out by using data from different publications. The problem with this approach is that the ecological factors cannot be completely ruled out. A statistical phylogenetic comparison by PCA between 15 species representing 7 different suborders, families or subfamilies of African Artiodactyla was carried out. The phylogenetic properties showed that the milk composition of the Bovinae, represented here by the subfamilies Bovini and Tragelaphini, differs from the other taxonomic groups, in that the Alcelaphinae had a high milk fat content of the medium chain length fatty acids C8-C12 (>17% of total fatty acids) and the Hippotraginae high amounts of oligosaccharides (>0.4%).
Assuntos
Artiodáctilos/classificação , Leite/química , África , Animais , Feminino , Filogenia , Especificidade da EspécieRESUMO
Despite its growing use in anatomical and ecological studies, the morphological variability and ontogenetic development of the bony labyrinth have very rarely been investigated in ruminants. Here we study its morphology in 15 adult and 10 juvenile specimens in the three extant tragulid ruminant genera. Intraspecific and interspecific variability is quantified using morphometric and 3D geometric morphometrics analyses. The bony labyrinth of Tragulus, Hyemoschus, and Moschiola is strikingly different, clustering in clearly different morphospaces despite similar ecological adaptations. Although the bony labyrinths within two species of the same genus cannot be distinguished from each other based on the chosen semi-landmarks, discrete interspecific differences exist. We were able to show for the first time that an artiodactyl mammal in a late fetal stage possesses an almost fully formed bony labyrinth similar to that of adults. No significant change either occurs in size or morphology after ossification of the petrosal bone. Some intraspecific variation is observed on the shape of the lateral semi-circular canal, the size and shape of the common crus, the coil of the cochlea or the stapedial ratio. Variable structures are expected to be highly informative characters for a large cladistic analysis. They can be used for phylogenetic studies in ruminants. Incorporating juvenile specimens in studies is not problematic, as they fall within the morphological range of adults.
Assuntos
Orelha Interna/anatomia & histologia , Ruminantes/anatomia & histologia , Animais , Evolução Biológica , Feminino , Imageamento Tridimensional , Masculino , Filogenia , Especificidade da EspécieRESUMO
Methane (CH4) production varies between herbivore species, but reasons for this variation remain to be elucidated. Here, we report open-circuit chamber respiration measurements of CH4 production in four specimens each of two non-ruminant mammalian herbivores with a complex forestomach but largely differing in body size, the collared peccary (Pecari tajacu, mean body mass 17kg) and the pygmy hippopotamus (Hexaprotodon liberiensis, 229kg) fed lucerne-based diets. In addition, food intake, digestibility and mean retention times were measured in the same experiments. CH4 production averaged 8 and 72L/d, 18 and 19L/kg dry matter intake, and 4.0 and 4.2% of gross energy intake for the two species, respectively. When compared with previously reported data on CH4 production in other non-ruminant and ruminant foregut-fermenting as well as hindgut-fermenting species, it is evident that neither the question whether a species is a foregut fermenter or not, or whether it ruminates or not, is of the relevance previously suggested to explain variation in CH4 production between species. Rather, differences in CH4 production between species on similar diets appear related to species-specific differences in food intake and digesta retention kinetics.
Assuntos
Artiodáctilos/metabolismo , Fermentação , Trato Gastrointestinal/metabolismo , Herbivoria/fisiologia , Metano/metabolismo , Ruminantes/metabolismo , Animais , Peso Corporal , Dióxido de Carbono/metabolismo , Dieta , Digestão/fisiologia , Consumo de OxigênioRESUMO
In the mammalian order Artiodactyla, the majority of arterial blood entering the intracranial cavity is supplied by a large arterial meshwork called the carotid rete. This vascular structure functionally replaces the internal carotid artery. Extensive experimentation has demonstrated that the artiodactyl carotid rete drives one of the most effective selective brain cooling mechanisms among terrestrial vertebrates. Less well understood is the impact that the unique morphology of the carotid rete may have on the hemodynamics of blood flow to the cerebrum. It has been hypothesized that, relative to the tubular internal carotid arteries of most other vertebrates, the highly convoluted morphology of the carotid rete may increase resistance to flow during extreme changes in cerebral blood pressure, essentially protecting the brain by acting as a resistor. We test this hypothesis by employing simple and complex physical models to a 3D surface rendering of the carotid rete of the domestic goat, Capra hircus. First, we modeled the potential for increased resistance across the carotid rete using an electrical circuit analog. The extensive branching of the rete equates to a parallel circuit that is bound in series by single tubular arteries, both upstream and downstream. This method calculated a near-zero increase in resistance across the rete. Because basic equations do not incorporate drag, shear-stress, and turbulence, we used computational fluid dynamics to simulate the impact of these computationally intensive factors on resistance. Ultimately, both simple and complex models demonstrated negligible changes in resistance and blood pressure across the arterial meshwork. We further tested the resistive potential of the carotid rete by simulating blood pressures known to occur in giraffes. Based on these models, we found resistance (and blood pressure mitigation as a whole) to be an unlikely function for the artiodactyl carotid rete.
Assuntos
Artérias Carótidas/fisiologia , Cabras/fisiologia , Modelos Cardiovasculares , Animais , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular/fisiologia , Girafas/fisiologia , Hemodinâmica/fisiologia , Hemorreologia/fisiologia , Resistência Vascular/fisiologiaRESUMO
Extant eutherians exhibit a wide range of adult brain sizes and degree of cortical gyrification. Quantitative analysis of parietal isocortical sections held in museum collections was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness among diverse eutherian embryos, foetuses, and neonates. Analysis indicated that, for most eutherians, cortical plate aggregation begins at about 6-18 mm greatest length or about 120-320 µm pallial thickness. Expansion of the proliferative compartment occurs at a similar pace in most eutherians, but exceptionally rapidly in hominoids. Involution of the pallial proliferative zones occurs over a wide range of body sizes (42 mm to over 500 mm greatest length) or when the cerebral cortex reaches a thickness of 1.2-9.8 mm depending on the eutherian group. Many of these values overlap with those for metatherians. The findings suggest that there is less evolutionary flexibility in the timing of cortical plate aggregation than in the rate of expansion of the pallial proliferative compartment and the duration of proliferative zone activity.