Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
EMBO J ; 40(24): e108069, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704268

RESUMO

Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine-fed mice showed better cold tolerance. In mice with diet-induced obesity, the asparagine-fed group was more responsive to ß3-adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13 C-glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.


Assuntos
Asparagina/farmacologia , Glicólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Animais , Células Cultivadas , Temperatura Baixa , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metabolômica , Camundongos
2.
EMBO Rep ; 24(8): e56233, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37382163

RESUMO

Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.


Assuntos
Aspartato-Amônia Ligase , Células-Tronco Neurais , Aspartato-Amônia Ligase/metabolismo , Diferenciação Celular/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética
3.
Methods ; 229: 133-146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944134

RESUMO

Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases. Recognizing their critical roles in many biological processes including virus maturation, and virulence, accurate identification and characterization of APLs is indispensable. Experimental identification and characterization of APLs is laborious and time-consuming. Here, we developed APLpred, a novel support vector machine (SVM) based predictor that can predict APLs from the primary sequences. APLpred was developed using Boruta-based optimal features derived from seven encodings and subsequently trained using five machine learning algorithms. After evaluating each model on an independent dataset, we selected APLpred (an SVM-based model) due to its consistent performance during cross-validation and independent evaluation. We anticipate APLpred will be an effective tool for identifying APLs. This could aid in designing inhibitors against these enzymes and exploring their functions. The APLpred web server is freely available at https://procarb.org/APLpred/.


Assuntos
Máquina de Vetores de Suporte , Aprendizado de Máquina , Biologia Computacional/métodos , Software , Sequência de Aminoácidos/genética , Bases de Dados de Proteínas
4.
Proc Natl Acad Sci U S A ; 119(50): e2210338119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36472959

RESUMO

Salt stress impairs nutrient metabolism in plant cells, leading to growth and yield penalties. However, the mechanism by which plants alter their nutrient metabolism processes in response to salt stress remains elusive. In this study, we identified and characterized the rice (Oryza sativa) rice salt tolerant 1 (rst1) mutant, which displayed improved salt tolerance and grain yield. Map-based cloning revealed that the gene RST1 encoded an auxin response factor (OsARF18). Molecular analyses showed that RST1 directly repressed the expression of the gene encoding asparagine synthetase 1 (OsAS1). Loss of RST1 function increased the expression of OsAS1 and improved nitrogen (N) utilization by promoting asparagine production and avoiding excess ammonium (NH4+) accumulation. RST1 was undergoing directional selection during domestication. The superior haplotype RST1Hap III decreased its transcriptional repression activity and contributed to salt tolerance and grain weight. Together, our findings unravel a synergistic regulator of growth and salt tolerance associated with N metabolism and provide a new strategy for the development of tolerant cultivars.


Assuntos
Aspartato-Amônia Ligase , Oryza , Tolerância ao Sal/genética , Oryza/genética , Aspartato-Amônia Ligase/genética , Expressão Gênica
5.
J Bacteriol ; 206(2): e0042023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38193659

RESUMO

The Gram-positive model bacterium B. subtilis is able to import all proteinogenic amino acids from the environment as well as to synthesize them. However, the players involved in the acquisition of asparagine have not yet been identified for this bacterium. In this work, we used d-asparagine as a toxic analog of l-asparagine to identify asparagine transporters. This revealed that d- but not l-asparagine is taken up by the malate/lactate antiporter MleN. Specific strains that are sensitive to the presence of l-asparagine due to the lack of the second messenger cyclic di-AMP or due to the intracellular accumulation of this amino acid were used to isolate and characterize suppressor mutants that were resistant to the presence of otherwise growth-inhibiting concentrations of l-asparagine. These screens identified the broad-spectrum amino acid importers AimA and BcaP as responsible for the acquisition of l-asparagine. The amino acid exporter AzlCD allows detoxification of l-asparagine in addition to 4-azaleucine and histidine. This work supports the idea that amino acids are often transported by promiscuous importers and exporters. However, our work also shows that even stereo-enantiomeric amino acids do not necessarily use the same transport systems.IMPORTANCETransport of amino acid is a poorly studied function in many bacteria, including the model organism Bacillus subtilis. The identification of transporters is hampered by the redundancy of transport systems for most amino acids as well as by the poor specificity of the transporters. Here, we apply several strategies to use the growth-inhibitive effect of many amino acids under defined conditions to isolate suppressor mutants that exhibit either reduced uptake or enhanced export of asparagine, resulting in the identification of uptake and export systems for l-asparagine. The approaches used here may be useful for the identification of transporters for other amino acids both in B. subtilis and in other bacteria.


Assuntos
Aminoácidos , Asparagina , Aminoácidos/metabolismo , Asparagina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homeostase
6.
Artigo em Inglês | MEDLINE | ID: mdl-39344414

RESUMO

Among the twenty proteinogenic amino acids, glutamine and asparagine represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and "glutamine addiction" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the Amide Signaling Circuit (ASC) in homage to the SLC1A5-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.

7.
J Proteome Res ; 23(7): 2495-2504, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38829961

RESUMO

Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes. We find that AML with inv(16) has the lowest overall ASNS expression. While AML with deletion 7/7q had ASNS levels slightly lower than those of AML without deletion 7/7q, this observation was not significant. Low ASNS expression correlated with improved overall survival (46 versus 54 weeks, respectively, p = 0.011), whereas higher ASNS levels were associated with better response to venetoclax-based therapy. Protein correlation analysis demonstrated association between ASNS and proteins involved in methylation and DNA repair. In conclusion, while ASNS expression was not lower in patients with deletion 7/7q as initially predicted, ASNS levels were highly variable across AML patients. Further studies are needed to assess whether patients with low ASNS expression are susceptible to asparaginase-based therapy due to their inability to augment compensatory ASNS expression upon asparagine depletion.


Assuntos
Aspartato-Amônia Ligase , Leucemia Mieloide Aguda , Proteômica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Feminino , Proteômica/métodos , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Deleção Cromossômica , Análise Serial de Proteínas/métodos , Asparaginase/uso terapêutico , Asparaginase/genética , Cromossomos Humanos Par 7/genética , Adulto Jovem , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida
8.
Br J Haematol ; 205(1): 175-188, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736325

RESUMO

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Asparagina , Sobrevivência Celular , Antígenos de Histocompatibilidade Menor , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Asparagina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Sobrevivência Celular/efeitos dos fármacos , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Linhagem Celular Tumoral , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Criança
9.
Biochem Biophys Res Commun ; 733: 150701, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39326256

RESUMO

The sensitivity of currently available screening tools for urothelial carcinoma (UC) remains unsatisfactory particularly at early stages. Hence, we aimed to establish a novel blood-based screening tool for urothelial carcinoma. We measured serum d-amino acid levels in 108 and 192 patients with and without UC individuals in the derivation cohort, and 15 and 25 patients with and without UC in the validation cohort. Serum d-asparagine levels were significantly higher in patients with UC than in those without UC (p < 0.0001). We developed a novel screening equation for the diagnosis of urothelial carcinoma using d-asparagine in serum and estimated the glomerular filtration rate (eGFR). Serum d-asparagine levels adjusted for eGFR exhibited high performance in the diagnosis of UC (AUC-ROC, 0.869; sensitivity, 80.6 %; specificity, 82.7 %), even in early-stage UC (AUC-ROC: 0.859, sensitivity: 83.3 %, specificity: 82.3 %), which were previously misdiagnosed via urinary occult blood or urine cytology. This established strategy combined with urinary occult blood, improves diagnostic ability (sensitivity: 93.7 %, specificity: 70.1 %).


Assuntos
Asparagina , Taxa de Filtração Glomerular , Humanos , Masculino , Feminino , Asparagina/sangue , Pessoa de Meia-Idade , Idoso , Detecção Precoce de Câncer/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , Sensibilidade e Especificidade , Neoplasias Urológicas/sangue , Neoplasias Urológicas/diagnóstico , Neoplasias da Bexiga Urinária/sangue , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Urotélio/patologia , Urotélio/metabolismo , Carcinoma de Células de Transição/sangue , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/urina
10.
Cancer Cell Int ; 24(1): 95, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438907

RESUMO

BACKGROUND: The present study aimed to investigate the expression level, biological function, and underlying mechanism of transmembrane protein 176B (TMEM176B) in gastric cancer (GC). METHODS: TMEM176B expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB). The function of TMEM176B was determined by various in vitro assays including colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and flow cytometry. Bioinformatics techniques were then used to elucidate the signaling pathways associated with TMEM176B activity. Tumor formation experiments were conducted on nude mice for in vivo validation of the preceding findings. TMEM176B expression was cross-referenced to clinicopathological parameters and survival outcomes. RESULTS: It was observed that TMEM176B was overexpressed in GC cells and tissues. Targeted TMEM176B abrogation inhibited colony formation, proliferation, migration, and invasion but promoted apoptosis in GC cell lines while TMEM176B overexpression had the opposite effects. Subsequent experimental validation disclosed an association between TMEM176B and the phosphatidylinositol 3-carboxykinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling axis. Moreover, TMEM176B affects GC cancer progression by regulating asparagine synthetase (ASNS). The in vivo assays confirmed that TMEM176B is oncogenic and the clinical data revealed a connection between TMEM176B expression and the clinicopathological determinants of GC. CONCLUSION: The foregoing results suggest that TMEM176B significantly promotes the development of gastric cancer and is an independent prognostic factor of it.

11.
Brain Behav Immun ; 119: 56-83, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555992

RESUMO

Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1ß-C/EBPß-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.


Assuntos
Depressão , Hipocampo , Estresse Psicológico , Animais , Hipocampo/metabolismo , Camundongos , Depressão/metabolismo , Masculino , Estresse Psicológico/metabolismo , Receptor trkB/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/metabolismo , Glicoproteínas de Membrana/metabolismo
12.
Cell Commun Signal ; 22(1): 163, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448969

RESUMO

Asparagine, an important amino acid in mammals, is produced in several organs and is widely used for the production of other nutrients such as glucose, proteins, lipids, and nucleotides. Asparagine has also been reported to play a vital role in the development of cancer cells. Although several types of cancer cells can synthesise asparagine alone, their synthesis levels are insufficient to meet their requirements. These cells must rely on the supply of exogenous asparagine, which is why asparagine is considered a semi-essential amino acid. Therefore, nutritional inhibition by targeting asparagine is often considered as an anti-cancer strategy and has shown success in the treatment of leukaemia. However, asparagine limitation alone does not achieve an ideal therapeutic effect because of stress responses that upregulate asparagine synthase (ASNS) to meet the requirements for asparagine in cancer cells. Various cancer cells initiate different reprogramming processes in response to the deficiency of asparagine. Therefore, it is necessary to comprehensively understand the asparagine metabolism in cancers. This review primarily discusses the physiological role of asparagine and the current progress in the field of cancer research.


Assuntos
Leucemia , Neoplasias , Animais , Asparagina , Aminoácidos , Glucose , Mamíferos
13.
Pharmacol Res ; 206: 107292, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002867

RESUMO

Nutrient bioavailability in the tumor microenvironment plays a pivotal role in tumor proliferation and metastasis. Among these nutrients, glutamine is a key substance that promotes tumor growth and proliferation, and its downstream metabolite asparagine is also crucial in tumors. Studies have shown that when glutamine is exhausted, tumor cells can rely on asparagine to sustain their growth. Given the reliance of tumor cell proliferation on asparagine, restricting its bioavailability has emerged as promising strategy in cancer treatment. For instance, the use of asparaginase, an enzyme that depletes asparagine, has been one of the key chemotherapies for acute lymphoblastic leukemia (ALL). However, tumor cells can adapt to asparagine restriction, leading to reduced chemotherapy efficacy, and the mechanisms by which different genetically altered tumors are sensitized or adapted to asparagine restriction vary. We review the sources of asparagine and explore how limiting its bioavailability impacts the progression of specific genetically altered tumors. It is hoped that by targeting the signaling pathways involved in tumor adaptation to asparagine restriction and certain factors within these pathways, the issue of drug resistance can be addressed. Importantly, these strategies offer precise therapeutic approaches for genetically altered cancers.


Assuntos
Asparagina , Neoplasias , Humanos , Asparagina/metabolismo , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Terapia de Alvo Molecular
14.
Mol Ther ; 31(11): 3337-3354, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689970

RESUMO

Focal segmental glomerulosclerosis (FSGS) is the most common glomerular disorder causing end-stage renal diseases worldwide. Central to the pathogenesis of FSGS is podocyte dysfunction, which is induced by diverse insults. However, the mechanism governing podocyte injury and repair remains largely unexplored. Asparagine endopeptidase (AEP), a lysosomal protease, regulates substrates by residue-specific cleavage or degradation. We identified the increased AEP expression in the primary proteinuria model which was induced by adriamycin (ADR) to mimic human FSGS. In vivo, global AEP knockout mice manifested increased injury-susceptibility of podocytes in ADR-induced nephropathy (ADRN). Podocyte-specific AEP knockout mice exhibited much more severe glomerular lesions and podocyte injury after ADR injection. In contrast, podocyte-specific augmentation of AEP in mice protected against ADRN. In vitro, knockdown and overexpression of AEP in human podocytes revealed the cytoprotection of AEP as a cytoskeleton regulator. Furthermore, transgelin, an actin-binding protein regulating actin dynamics, was cleaved by AEP, and, as a result, removed its actin-binding regulatory domain. The truncated transgelin regulated podocyte actin dynamics and repressed podocyte hypermotility, compared to the native full-length transgelin. Together, our data reveal a link between lysosomal protease AEP and podocyte cytoskeletal homeostasis, which suggests a potential therapeutic role for AEP in proteinuria disease.


Assuntos
Cisteína Endopeptidases , Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Animais , Humanos , Camundongos , Actinas/genética , Actinas/metabolismo , Doxorrubicina/efeitos adversos , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Nefropatias/metabolismo , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Proteinúria/patologia , Cisteína Endopeptidases/genética
15.
BMC Psychiatry ; 24(1): 299, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641826

RESUMO

BACKGROUND: Despite ongoing research, the underlying causes of schizophrenia remain unclear. Aspartate and asparagine, essential amino acids, have been linked to schizophrenia in recent studies, but their causal relationship is still unclear. This study used a bidirectional two-sample Mendelian randomization (MR) method to explore the causal relationship between aspartate and asparagine with schizophrenia. METHODS: This study employed summary data from genome-wide association studies (GWAS) conducted on European populations to examine the correlation between aspartate and asparagine with schizophrenia. In order to investigate the causal effects of aspartate and asparagine on schizophrenia, this study conducted a two-sample bidirectional MR analysis using genetic factors as instrumental variables. RESULTS: No causal relationship was found between aspartate and schizophrenia, with an odds ratio (OR) of 1.221 (95%CI: 0.483-3.088, P-value = 0.674). Reverse MR analysis also indicated that no causal effects were found between schizophrenia and aspartate, with an OR of 0.999 (95%CI: 0.987-1.010, P-value = 0.841). There is a negative causal relationship between asparagine and schizophrenia, with an OR of 0.485 (95%CI: 0.262-0.900, P-value = 0.020). Reverse MR analysis indicates that there is no causal effect between schizophrenia and asparagine, with an OR of 1.005(95%CI: 0.999-1.011, P-value = 0.132). CONCLUSION: This study suggests that there may be a potential risk reduction for schizophrenia with increased levels of asparagine, while also indicating the absence of a causal link between elevated or diminished levels of asparagine in individuals diagnosed with schizophrenia. There is no potential causal relationship between aspartate and schizophrenia, whether prospective or reverse MR. However, it is important to note that these associations necessitate additional research for further validation.


Assuntos
Asparagina , Esquizofrenia , Humanos , Asparagina/genética , Ácido Aspártico/genética , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estudos Prospectivos
16.
Breed Sci ; 74(1): 37-46, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39246437

RESUMO

We review the undertaking of a field trial of low asparagine wheat lines in which the asparagine synthetase gene, TaASN2, has been knocked out using CRISPR/Cas9. The field trial was undertaken in 2021-2022 and represented the first field release of genome edited wheat in Europe. The year of the field trial and the period since have seen rapid changes in the regulations covering both the field release and commercialisation of genome edited crops in the UK. These historic developments are reviewed in detail. Free asparagine is the precursor for acrylamide formation during high-temperature cooking and processing of grains, tubers, storage roots, beans and other crop products. Consequently, work on reducing the free asparagine concentration of wheat and other cereal grains, as well as the tubers, beans and storage roots of other crops, is driven by the need for food businesses to comply with current and potential future regulations on acrylamide content of foods. The topic illustrates how strategic and applied crop research is driven by regulations and also needs a supportive regulatory environment in which to thrive.

17.
Molecules ; 29(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257219

RESUMO

In the literature, there are few reports indicating hydrocolloids as a factor capable of reducing the amount of acrylamide formed in food. Therefore, the aim of the study was to examine the ability of soluble oat fiber to reduce the amount of acrylamide formed in the process of obtaining rusks. The effect of the concentration of ß-glucans in oat fiber preparations at 20% and 30% and the amount of preparations used at 10%, 15%, and 20% was investigated. On the basis of the obtained test results, it was shown that the most optimal concentration of oat fiber preparation in rusks recipe is at 15%, regardless of the content of ß-glucan in it. This concentration makes it possible to reduce the amount of acrylamide formed in baked goods and rusks by ~70% and ~60%, respectively, while maintaining the desired physical and chemical properties of the product. In addition, it was shown that the browning index and water activity strongly correlate with the content of acrylamide in rusks, which makes them good markers of this compound in rusks. The use of hydrocolloids in the form of oat fiber preparations with different contents of ß-glucan as a tool for reducing the amount of acrylamide in rusks, at the same time, offers the possibility of enriching these products with a soluble dietary fiber with health properties.


Assuntos
Pão , beta-Glucanas , Acrilamida , Avena , Coloides
18.
J Sci Food Agric ; 104(7): 4070-4082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294231

RESUMO

BACKGROUND: In wheat-derived bakery products, the quantity of free asparagine (fAsn) has been identified as a key factor in acrylamide (AA) formation. Based on this assumption, four varieties of common wheat (Triticum aestivum L.), Stromboli, Montecarlo, Sothys and Cosmic, selected for their different fAsn content inside the grain, were studied to evaluate their potential in the production of pizza with reduced AA levels. To this purpose, wholemeal and refined flours were obtained from each variety. RESULTS: The fAsn content ranged from 0.25 to 3.30 mmol kg-1, with higher values for wholemeal flours which also showed greater amount of ash, fibre and damaged starch than refined wheat flours. All types of flours were separately used to produce wood oven baked pizza base, according to the Traditional Speciality Guaranteed EU Regulation (97/2010). AA reduction in the range 47-68% was found for all the selected wheat cultivars, compared with a commercial flour, with significantly lower values registered when refined flour was used. Moreover, refined leavened dough samples showed decreased levels of fAsn and reducing sugars due to the fermentation activity of yeasts. Furthermore, it was confirmed that pizza made with wholemeal flours exhibited lower rapidly digestible starch (RDS) and rapidly available glucose (RAG) values compared to that prepared with the refined flour. CONCLUSION: This study clearly shows that a reduced asparagine content in wheat flour is a key factor in the mitigation of AA formation in pizza base. Unfortunately, at the same time, it is highlighted how it is necessary to sacrifice the beneficial effects of fibre intake, such as lowering the glycaemic index, in order to reduce AA. © 2024 Society of Chemical Industry.


Assuntos
Asparagina , Farinha , Asparagina/química , Amido , Triticum/química , Acrilamida/química , Madeira , Pão
19.
Compr Rev Food Sci Food Saf ; 23(1): e13260, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284574

RESUMO

Thermal processing techniques can lead to the formation of heat-induced toxic substances. Acrylamide is one contaminant that has received much scientific attention in recent years, and it is formed essentially during the Maillard reaction when foods rich in carbohydrates, particularly reducing sugars (glucose, fructose), and certain free amino acids, especially asparagine (ASN), are processed at high temperatures (>120°C). The highly variable free ASN concentration in raw materials makes it challenging for food businesses to keep acrylamide content below the European Commission benchmark levels, while avoiding flavor, color, and texture impacts on their products. Free ASN concentrations in crops are affected by environment, genotype, and soil fertilization, which can also influence protein content and amino acid composition. This review aims to provide an overview of free ASN and acrylamide quantification methods and mitigation strategies for acrylamide formation in foods, focusing on adding pulse flours to cereal-based snacks and bakery products. Overall, this review emphasizes the importance of these mitigation strategies in minimizing acrylamide formation in plant-based products and ensuring safer and healthier food options.


Assuntos
Asparagina , Grão Comestível , Asparagina/análise , Asparagina/química , Asparagina/metabolismo , Grão Comestível/química , Acrilamida/análise , Acrilamida/química , Acrilamida/toxicidade , Lanches , Carboidratos/análise , Carboidratos/química , Aminoácidos/análise
20.
Am J Physiol Cell Physiol ; 325(2): C550-C562, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458433

RESUMO

SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/ß-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias , Gravidez , Feminino , Humanos , Glutamina , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina , Microambiente Tumoral , Sistemas de Transporte de Aminoácidos , Aminoácidos , Serina , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa