Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cereb Cortex ; 33(17): 9778-9786, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37482884

RESUMO

Association fibers connect different areas of the cerebral cortex over long distances and integrate information to achieve higher brain functions, particularly in humans. Prototyped association fibers are developed to the respective tangential direction throughout the cerebral hemispheres along the deepest border of the subplate during the fetal period. However, how guidance to remote areas is achieved is not known. Because the subplate is located below the cortical surface, the tangential direction of the fibers may be biased by the curved surface geometry due to Sylvian fissure and cortical poles. The fiber length can be minimized if the tracts follow the shortest paths (geodesics) of the curved surface. Here, we propose and examine a theory that geodesics guide the tangential direction of long association fibers by analyzing how geodesics are spatially distributed on the fetal human brains. We found that the geodesics were dense on the saddle-shaped surface of the perisylvian region and sparse on the dome-shaped cortical poles. The geodesics corresponded with the arrangement of five typical association fibers, supporting the theory. Thus, the geodesic theory provides directional guidance information for wiring remote areas and suggests that long association fibers emerge from minimizing their tangential length in fetal brains.


Assuntos
Córtex Cerebral , Humanos , Córtex Cerebral/anatomia & histologia , Feto
2.
Neuroimage ; 261: 119525, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908606

RESUMO

Association fibers connect the cortical regions and experience rapid development involving myelination and axonal growth during infancy. Yet, the spatiotemporal patterns of microstructural changes along these tracts, as well as the developmental interaction between the white matter (WM) tracts and the cortical gray matter (cGM) connected to them, are mostly unknown during infancy. In this study, we performed a diffusion MRI-based tractography and microstructure study in a cohort of 89 healthy preterm-born infants with gestational age at birth between 28.1∼36.4 weeks and postmenstrual age at scan between 39.9∼59.9 weeks. Results revealed that several C-shaped fibers, such as the arcuate fasciculus, cingulum, and uncinate fasciculus, demonstrated symmetrical along-tract profiles; and the horizontally oriented running fibers, including the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus, demonstrated an anterior-posterior developmental gradient. This study characterized the along-tract profiles using fixel-based analysis and revealed that the fiber cross-section (FC) of all five association fibers demonstrated a fluctuating increase with age, while the fiber density (FD) monotonically increase with age. NODDI was utilized to analyze the microstructural development of cGM and indicated cGM connected to the anterior end of the association fibers developed faster than that of the posterior end during 0-5 months. Notably, a mediation analysis was used to explore the relation between the development of WM and associated cGM, and demonstrated a partial mediation effect of FD in WM on the development of intracellular volume (ICV) in cGM and a full mediation effect of ICV on the growth of FD in most fibers, suggesting a predominant mediation of cGM on the WM development. Furthermore, for assessing whether those results were biased by prematurity, we compared preterm- and term-born neonates with matched scan age, gender, and multiple births from the developing human connectome project (dHCP) dataset to assess the effect of preterm-birth, and the results indicated a similar developmental pattern of the association fibers and their attached cGM. These findings presented a comprehensive picture of the major association fibers during early infancy and deciphered the developmental interaction between WM and cGM in this period.


Assuntos
Encéfalo , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Rede Nervosa , Substância Branca/diagnóstico por imagem
3.
Neuroimage ; 255: 119197, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417753

RESUMO

Each variation of the cortical folding pattern implies a particular rearrangement of the geometry of the fibers of the underlying white matter. While this rearrangement only impacts the ends of the long pathways, it may affect most of the trajectory of the short bundles. Therefore, mapping the short fibers of the human brain using diffusion-based tractography requires a dedicated strategy to overcome the variability of the folding patterns. In this paper, we propose a fiber-based stratification strategy splitting the population into homogeneous groups for disentangling the superficial white matter bundle organization. This strategy introduces a new refined fiber distance which includes angular considerations for inferring fine-grained atlases of the short bundles surrounding a specific sulcus and a subtractogram distance that quantifies the similitude between fiber sets of two different subjects. The stratification splits the population into groups with similar regional fiber organization using manifold learning. We first successfully test the hypothesis that the main source of variability of the regional fiber organization is the variability of the regional folding pattern. Then, in each group, we proceed with the automatic identification of the most stable bundles, at a higher granularity level than what can be achieved with the non-stratified whole population, enabling the disentanglement of the very variable configuration of the short fibers. Finally, the method searches for bundle correspondence across groups to build a population level atlas. As a proof of concept, the atlas refinement achieved by this strategy is illustrated for the fibers that surround the central sulcus and the superior temporal sulcus using the HCP dataset.


Assuntos
Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Processamento de Imagem Assistida por Computador , Aprendizagem , Fibras Nervosas Mielinizadas , Substância Branca/diagnóstico por imagem
4.
Neuroimage ; 212: 116673, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114152

RESUMO

The mapping of human brain connections is still an on going task. Unlike deep white matter (DWM), which has been extensively studied and well documented, superficial white matter (SWM) has been often left aside. Improving our understanding of the SWM is an important goal for a better understanding of the brain network and its relation to several pathologies. The shape and localization of these short bundles present a high variability across subjects. Furthermore, the small diameter of most superficial bundles and partial volume effects induced by their proximity to the cortex leads to complex tratography issues. Therefore, the mapping of SWM bundles and the use of the resulting atlases for clinical studies requiere dedicated methodologies that are reviewed in this paper.


Assuntos
Encéfalo/anatomia & histologia , Conectoma/métodos , Substância Branca/anatomia & histologia , Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Humanos , Substância Branca/fisiologia
5.
Artigo em Russo | MEDLINE | ID: mdl-30412152

RESUMO

Surgery of intracerebral tumors involving long association fibers is a challenge. In this study, we analyze the results of intraoperative mapping of the superior longitudinal, arcuate, and frontal aslant tracts in surgery of brain gliomas. PURPOSE: The study purpose was to compare the results of intraoperative mapping and the postoperative speech function in patients with gliomas of the premotor area of the speech-dominant frontal lobe, which involved the superior longitudinal, arcuate, and frontal aslant tracts, who were operated on using awake craniotomy. MATERIAL AND METHODS: Twelve patients with left frontal lobe gliomas were operated on: 11 patients were right-handed, and one patient was a left-hander retrained at an early age. Histological types of tumors were represented by Grade II diffuse astrocytomas (6 patients), Grade III anaplastic astrocytomas (1 patient), Grade IV glioblastoma (1 patient), Grade II oligodendroglioma (1 patient), and Grade III anaplastic oligodendrogliomas (3 patients). The mean age of patients was 45 (29-67) years; there were 6 males and 6 females. All patients underwent preoperative and postoperative MRI with reconstruction of the long association fibers and determination of the topographic anatomical relationships between the fibers and the tumor. Surgery was performed using the asleep-awake-asleep protocol with intraoperative awakening of patients. All patients underwent cortical and subcortical electrophysiological stimulation to control the localization of eloquent structures and to clarify the safe limits of resection. For intraoperative speech monitoring, a computerized naming test was used with naming of nouns or verbs, and automatic speech was evaluated (counting from 1 to 10, enumeration of months and days of the week), which was complemented by a talk with the patient. Speech disorders before, during, and after surgery were evaluated by a neuropsychologist. The mean current strength during direct electrical stimulation was 3 (1.9-6.5) mA. RESULTS: The association fibers were intraoperatively identified in all patients (SLF/AF in 11 patients; FAT in one patient). In 4 patients, the cortical motor speech area was intraoperatively mapped; in three cases, tumor resection was accompanied by speech disturbances outside the stimulation. During direct electrical stimulation, speech disturbances developed in 7 of 12 cases. All patients underwent control MRI within the first 48-72 h: total resection (more than 90% of the tumor) was performed in 7 cases; subtotal resection was achieved in two patients; partial resection was performed in two cases. According to postoperative MR tractography, the resected tumor bed was adjacent to the SLF/AF complex in 7 cases, located near the SLF/AF complex in three cases, and adjacent to the FAT in two cases. Postoperatively, 11 out of 12 patients had worsening of neurological symptoms in the form of various speech disturbances. In one patient, speech disturbances developed 2 days after surgery, which was associated with an increase in edema. On examination 3 months after surgery, severe speech disturbances remained in 1 patient. CONCLUSION: Resection of frontal lobe tumors in the speech-dominant hemisphere using early postoperative awakening is associated with a high rate of complex speech disorders due to injury to the SLF/AF complex and FAT. In these cases, intraoperative speech mapping with allowance for the course of long association fibers is an essential procedure. Preoperative tractography in combination with intraoperative speech mapping enables identification of association fibers of the SLF/AF complex and FAT, which may help to avoid severe conduction aphasia with poor speech recovery after tumor resection.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas , Glioma , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estimulação Elétrica , Feminino , Lobo Frontal , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória
6.
Neuroimage ; 147: 703-725, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034765

RESUMO

Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of pathogenesis triggered by abnormal connectivity. In this work we automatically created a multi-subject atlas of SWM diffusion-based bundles of the whole brain. For each subject, the complete cortico-cortical tractogram is first split into sub-tractograms connecting pairs of gyri. Then intra-subject shape-based fiber clustering performs compression of each sub-tractogram into a set of bundles. Proceeding further with shape-based clustering provides a match of the bundles across subjects. Bundles found in most of the subjects are instantiated in the atlas. To increase robustness, this procedure was performed with two independent groups of subjects, in order to discard bundles without match across the two independent atlases. Finally, the resulting intersection atlas was projected on a third independent group of subjects in order to filter out bundles without reproducible and reliable projection. The final multi-subject diffusion-based U-fiber atlas is composed of 100 bundles in total, 50 per hemisphere, from which 35 are common to both hemispheres.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Adulto , Imagem de Tensor de Difusão/normas , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 111(35): 12919-24, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25139992

RESUMO

To understand the cellular basis of learning and memory, the neurophysiology of the hippocampus has been largely examined in thin transverse slice preparations. However, the synaptic architecture along the longitudinal septo-temporal axis perpendicular to the transverse projections in CA1 is largely unknown, despite its potential significance for understanding the information processing carried out by the hippocampus. Here, using a battery of powerful techniques, including 3D digital holography and focal glutamate uncaging, voltage-sensitive dye, two-photon imaging, electrophysiology, and immunohistochemistry, we show that CA1 pyramidal neurons are connected to one another in an associational and well-organized fashion along the longitudinal axis of the hippocampus. Such CA1 longitudinal connections mediate reliable signal transfer among the pyramidal cells and express significant synaptic plasticity. These results illustrate a need to reconceptualize hippocampal CA1 network function to include not only processing in the transverse plane, but also operations made possible by the longitudinal network. Our data will thus provide an essential basis for future computational modeling studies on information processing operations carried out in the full 3D hippocampal network that underlies its complex cognitive functions.


Assuntos
Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Potenciação de Longa Duração/fisiologia , Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Mapeamento Encefálico/métodos , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Dendritos/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Células Piramidais/citologia , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos/fisiologia
8.
Hum Brain Mapp ; 37(4): 1321-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801955

RESUMO

White matter abnormalities have been shown in the large deep fibers of Alzheimer's disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. To investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer's disease (Age: 71.02 ± 5.84, 16M/28F) and 47 healthy controls (Age 69.23 ± 4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (P < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (P < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer's disease.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Idoso , Doença de Alzheimer/metabolismo , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Substância Branca/metabolismo
9.
Brain Struct Funct ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020215

RESUMO

Diffusion MRI tractography (dMRI) has fundamentally transformed our ability to investigate white matter pathways in the human brain. While long-range connections have extensively been studied, superficial white matter bundles (SWMBs) have remained a relatively underexplored aspect of brain connectivity. This study undertakes a comprehensive examination of SWMB connectivity in both the human and chimpanzee brains, employing a novel combination of empirical and geometric methodologies to classify SWMB morphology in an objective manner. Leveraging two anatomical atlases, the Ginkgo Chauvel chimpanzee atlas and the Ginkgo Chauvel human atlas, comprising respectively 844 and 1375 superficial bundles, this research focuses on sparse representations of the morphology of SWMBs to explore the little-understood superficial connectivity of the chimpanzee brain and facilitate a deeper understanding of the variability in shape of these bundles. While similar, already well-known in human U-shape fibers were observed in both species, other shapes with more complex geometry such as 6 and J shapes were encountered. The localisation of the different bundle morphologies, putatively reflecting the brain gyrification process, was different between humans and chimpanzees using an isomap-based shape analysis approach. Ultimately, the analysis aims to uncover both commonalities and disparities in SWMBs between chimpanzees and humans, shedding light on the evolution and organization of these crucial neural structures.

10.
Front Neurol ; 13: 794618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572948

RESUMO

The superior longitudinal fasciculus (SLF) is part of the longitudinal association fiber system, which lays connections between the frontal lobe and other areas of the ipsilateral hemisphere. As a dominant association fiber bundle, it should correspond to a well-defined structure with a clear anatomical definition. However, this is not the case, and a lot of confusion and overlap surrounds this entity. In this review/opinion study, we survey relevant current literature on the topic and try to clarify the definition of SLF in each hemisphere. After a comparison of postmortem dissections and data obtained from diffusion MRI studies, we discuss the specifics of this bundle regarding its anatomical landmarks, differences in lateralization, as well as individual variability. We also discuss the confusion regarding the arcuate fasciculus in relation to the SLF. Finally, we recommend a nomenclature based on the findings exposed in this review and finalize with a discussion on relevant functional correlates of the structure.

11.
J Neuroimaging ; 32(5): 866-874, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35983725

RESUMO

BACKGROUND AND PURPOSE: Alexander disease (AxD) is a neurodegenerative disorder caused by heterozygous Glial Fibrillary Acidic Protein mutation. The characteristic structural findings of AxD, such as leukodystrophic features, are well known, while association fibers of AxD remain uninvestigated. The aim of this study was to explore global and subcortical fibers in four brains with AxD using ex vivo diffusion tractography METHODS: High-angular-resolution diffusion magnetic resonance imaging (HARDI) tractography and diffusion-tensor imaging (DTI) tractography were used to evaluate long and short association fibers and compared to histological findings in brain specimens obtained from four donors with AxD and two donors without neurological disorders RESULTS: AxD brains showed impairment of long association fibers, except for the arcuate fasciculus and cingulum bundle, and abnormal trajectories of the inferior longitudinal and fronto-occipital fasciculi on HARDI tractography and loss of multidirectionality in subcortical fibers on DTI tractography. In histological studies, AxD brains showed diffuse low density on Klüver-Barrera and neurofilament staining and sporadic Rosenthal fibers on hematoxylin and eosin staining CONCLUSIONS: This study describes the spatial distribution of degenerations of short and long association fibers in AxD brains using combined tractography and pathological findings.


Assuntos
Doença de Alexander , Substância Branca , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos
12.
Front Hum Neurosci ; 15: 610947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716691

RESUMO

Patients with Wilson's disease (WD) suffer from prospective memory (PM) impairment, and some of patients develop cognitive impairment. However, very little is known about how brain structure and function changes effect PM in WD. Here, we employed multimodal neuroimaging data acquired from 22 WD patients and 26 healthy controls (HC) who underwent three-dimensional T1-weighted, diffusion tensor imaging (DTI), and resting state functional magnetic resonance imaging (RS-fMRI). We investigated gray matter (GM) volumes with voxel-based morphometry, DTI metrics using the fiber tractography method, and RS-fMRI using the seed-based functional connectivity method. Compared with HC, WD patients showed GM volume reductions in the basal ganglia (BG) and occipital fusiform gyrus, as well as volume increase in the visual association cortex. Moreover, whiter matter (WM) tracks of WD were widely impaired in association and limbic fibers. WM tracks in association fibers are significant related to PM in WD patients. Relative to HC, WD patients showed that the visual association cortex functionally connects to the thalamus and hippocampus, which is associated with global cognitive function in patients with WD. Together, these findings suggested that PM impairment in WD may be modulated by aberrant WM in association fibers, and that GM volume changes in the association cortex has no direct effect on cognitive status, but indirectly affect global cognitive function by its aberrant functional connectivity (FC) in patients with WD. Our findings may provide a new window to further study how WD develops into cognitive impairment, and deepen our understanding of the cognitive status and neuropathology of WD.

13.
Mol Brain ; 13(1): 37, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156301

RESUMO

In the white matter of the human cerebrum, the majority of cortico-cortical fibers are of short range, connecting neighboring cortical areas. U-fibers represent connections between neighboring areas and are located in the white matter immediately deep to the cerebral cortex. Using gyrencephalic carnivore ferrets, here we investigated the neurochemical, anatomical and developmental features of U-fibers. We demonstrate that U-fibers were derived from neighboring cortical areas in ferrets. U-fiber regions in ferrets were intensely stained with Gallyas myelin staining and Turnbull blue iron staining. We further found that U-fibers were derived from neurons in both upper and lower layers in neighboring areas of the cerebral cortex and that U-fibers were formed later than axons in the deep white matter during development. Our findings shed light on the fundamental features of U-fibers in the gyrencephalic cerebral cortex. Because genetic manipulation techniques for ferrets are now available, ferrets should be an important option for investigating the development, functions and pathophysiological changes of U-fibers.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Furões/fisiologia , Fibras Nervosas/patologia , Animais , Astrócitos/citologia , Microglia/citologia , Oligodendroglia/citologia , Substância Branca/fisiologia
14.
Int J Dev Neurosci ; 80(8): 717-729, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33067827

RESUMO

Sensorineural hearing loss (SNHL) is the most common developmental sensory disorder due to a loss of function within the inner ear or its connections to the brain. While successful intervention for auditory deprivation with hearing amplification and cochlear implants during a sensitive early developmental period can improve spoken-language outcomes, SNHL patients can suffer several cognitive dysfunctions including executive function deficits, visual cognitive impairment, and abnormal visual dominance in speaking perception even after successful intervention. To evaluate whether long association fibers are involved in the pathogenesis of impairment on the extra-auditory cognitive process in SNHL participants, we quantitatively analyzed high-angular resolution diffusion imaging (HARDI) tractography-derived fibers in participants with SNHL. After excluding cases with congenital disorders, perinatal brain damage, or premature birth, we enrolled 17 participants with SNHL aged under 10 years old. Callosal pathways (CP) and six types of cortico-cortical association fibers (arcuate fasciculus [AF], inferior longitudinal fasciculus [ILF], inferior fronto-occipital fasciculus [IFOF], uncinate fasciculus [UF], cingulum fasciculus [CF], and fornix [Fx]) in both hemispheres were identified and visualized. The ILF and IFOF were partly undetected in three profound SNHL participants. Compared to age- and gender-matched neurotypical controls (NC), decreased volumes, increased lengths, and high apparent diffusion coefficient (ADC) values without difference in fractional anisotropy (FA) values were identified in multiple types of fibers in the SNHL group. The impairment of long association fibers in SNHL may partly be related to the association of cognitive dysfunction with SNHL.


Assuntos
Corpo Caloso , Imagem de Tensor de Difusão , Perda Auditiva Neurossensorial , Anisotropia , Criança , Corpo Caloso/patologia , Imagem de Tensor de Difusão/métodos , Orelha Interna , Perda Auditiva Neurossensorial/diagnóstico por imagem , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Rede Nervosa , Substância Branca
15.
World Neurosurg ; 116: e577-e587, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29775765

RESUMO

BACKGROUND: The lesionectomy is a general surgical procedure for treating focal epilepsy resulting from a structural abnormality, but a favorable outcome cannot be achieved in some patients, especially patients whose symptomatogenic zone is located in remote regions. Herein we propose the surgical disconnection of the seizure propagation pathway, which consists of short and long associating fibers linking the epileptogenic zone to the remote symptomatogenic zone, as an effective method of achieving favorable seizure outcomes in patients with posterior cortex epilepsy. METHODS: Three patients with intractable epilepsy showing a structural abnormality in the medial posterior cortex participated in this study. Their habitual seizures were complex partial seizures stemming from remote symptomatogenic zones. Seizure propagation-related fibers were assumed by non-invasive examination and semiology. RESULTS: Cingulum and superior/inferior longitudinal fasciculus were considered to form main seizure propagation pathway. Based on the preoperative assumption and the intraoperative intracranial electroencephalogram findings, a lesionectomy and corticectomy were performed for 2 patients while a clusterectomy and corticectomy were performed for the remaining patient. The resection area was extended in the direction of the association fibers to disconnect the remote symptomatogenic zone completely from the epileptogenic zone. Engel class I was achieved in all the patients. CONCLUSION: The current study suggested that assuming the presence of association fibers was an important factor for achieving a favorable outcome in the surgical treatment of posterior cortex epilepsy. Though further study is required, disconnection surgery is recommended as a treatment option for cases in which the epileptogenic zone is located in an eloquent area.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Procedimentos Neurocirúrgicos/métodos , Córtex Cerebral/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-29560880

RESUMO

Schizophrenia has been conceptualized as a brain network disorder. The historical roots of connectomics in schizophrenia go back to the late 19th century, when influential scholars such as Theodor Meynert, Carl Wernicke, Emil Kraepelin, and Eugen Bleuler worked on a theoretical understanding of the multifaceted syndrome that is currently referred to as schizophrenia. Their work contributed to the understanding that symptoms such as psychosis and cognitive disorganization might stem from abnormal integration or dissociation due to disruptions in the brain's association fibers. As methods to test this hypothesis were long lacking, the claims of these early pioneers remained unsupported by empirical evidence for almost a century. In this review, we revisit and pay tribute to the old masters and, discussing recent findings from the developing field of disease connectomics, we examine how their pioneering hypotheses hold up in light of current evidence.

17.
Neuroimage Clin ; 9: 322-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509119

RESUMO

Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with alteration in eigenvector centrality, clustering coefficient (inter-regional) and participation co-efficient (inter-modular) alterations of frontal-striatal and fronto-limbic nodes suggesting re-organization of these pathways. Both along tract and structural topology network measurements correlated strongly with motor and visual clinical outcome scores. This study shows the value of combining along-tract analysis and structural network topology in depicting not only selective parietal occipital regional vulnerability but also reorganization of frontal-striatal and frontal-limbic pathways in preterm children with cerebral palsy. These finding also support the concept that widespread, but selective posterior-anterior neural network connectivity alterations in preterm children with cerebral palsy likely contribute to the pathogenesis of neurosensory and cognitive impairment in this group.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/patologia , Paralisia Cerebral/patologia , Recém-Nascido Prematuro , Vias Neurais/patologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Leucomalácia Periventricular/patologia , Masculino , Estimulação Luminosa , Análise de Componente Principal
18.
Clin Neuroradiol ; 25 Suppl 2: 231-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280382

RESUMO

INTRODUCTION: Several major association fiber tracts are known to be part of the language processing system. There is evidence that high angular diffusion-based MRI is able to separate these fascicles in a constant way. In this study, we wanted to proof this thesis using a novel whole brain "global tracking" approach and to test for possible lateralization. METHODS: Global tracking was performed in six healthy right-handed volunteers for the arcuate fascicle (AF), the medial longitudinal fascicle (MdLF), the inferior fronto-occipital fascicle (IFOF), and the inferior longitudinal fascicle (ILF). These fiber tracts were characterized quantitatively using the number of streamlines (SL) and the mean fractional anisotropy (FA). RESULTS: We were able to characterize the AF, the MdLF, the IFOF, and the ILF consistently in six healthy volunteers using global tracking. A left-sided dominance (LI > 0.2) for the AF was found in all participants. The MdLF showed a left-sided dominance in four participants (one female, three male). Regarding the FA, no lateralization (LI > 0.2) could be shown in any of the fascicles. CONCLUSION: Using a novel global tracking algorithm we confirmed that the courses of the primary language processing associated fascicles can consistently be differentiated. Additionally we were able to show a streamline-based left-sided lateralization in the AF of all right-handed healthy subjects.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Lateralidade Funcional/fisiologia , Idioma , Substância Branca/anatomia & histologia , Idoso , Feminino , Humanos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Substância Branca/fisiologia
19.
Brain Connect ; 4(9): 636-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25264168

RESUMO

Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Conectoma , Imagem de Tensor de Difusão , Imageamento Tridimensional , Fibras Nervosas Mielinizadas/ultraestrutura , Substância Cinzenta/anatomia & histologia , Humanos , Substância Branca/anatomia & histologia
20.
Mens Sana Monogr ; 6(1): 110-30, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013353

RESUMO

Contrary to the widely-held view that our conscious states are necessarily private (in that only one person can ever experience them directly), in this paper I argue that it is possible for a person to directly experience the conscious states of another. This possibility removes an obstacle to thinking of conscious states as physical, since their apparent privacy makes them different from all other physical states. A separation can be made in the brain between our conscious mental representations and the other executive processes that manipulate them and are guided by them in planning and executing behaviour. I argue here that these executive processes are also largely responsible for producing our sense of self in the moment. Our conscious perceptual representations themselves reside primarily in the posterior portions of the brain's cortex, in the temporal and parietal lobes, while the executive processes reside primarily in the prefrontal lobes. We can imagine an experiment in which we sever the association fibers that connect the posterior regions with these prefrontal regions and, instead, connect the posterior regions to the prefrontal regions of another person. According to my hypothesis, this would produce in the latter person the direct experience of the conscious perceptual states of the first person.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa