Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(5): 2897-2916, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35188384

RESUMO

Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.


Assuntos
Madeira , Aerossóis/química , Biomassa , Cinética
2.
Environ Sci Technol ; 55(23): 15672-15679, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784200

RESUMO

Volatile chemical products (VCPs) account for increasing fractions of organic carbon emitted to the atmosphere, particularly in urban areas. Fragrances are potentially reactive components that are added to many VCPs. To better constrain these emissions, 11 commercially available liquid fragrance mixtures were characterized for their composition and their evaporation modeled. Emissions of mass, hydroxyl reactivity, and ozone reactivity were estimated by modeling under four different scenarios. Fragrance compounds were generally less than one-half the mass of fragrance mixtures, with the balance comprised of solvents and plasticizers and unresolved mass thought to be dominated by plasticizers. The results showed that terpenes and terpenoids account for nearly all of the emitted mass and reactivity while only comprising ∼10% w/w on average of the liquid fragrance mixtures. Most of the reactivity is emitted within hours, with ozone reactivity evolving more rapidly than OH reactivity and comprised almost entirely of terpenes. Limonene, a common fragrance constituent, dominates the reactivity of emitted carbon. Generally, 20-40% of the potential hydroxyl reactivity contained in the fragrance mixture does not evaporate on time scales sufficient to have an impact on local or regional air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Radical Hidroxila , Odorantes , Ozônio/análise , Compostos Orgânicos Voláteis/análise
3.
Sci Total Environ ; 949: 174964, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059656

RESUMO

The currently used pesticides are mostly semi-volatile organic compounds. As a result, a fraction of them can be adsorbed on atmospheric aerosol surface. Their atmospheric photolysis is poorly documented, and gaps persist in understanding their reactivity in the particle phase. Laboratory experiments were conducted to determine the photolysis rates of eight commonly used pesticides (i.e., cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, and tetraconazole) using a flow reactor. These pesticides were individually adsorbed on hydrophobic silica particles and exposed to a filtered xenon lamp to mimic atmospheric aerosols and sunlight irradiation, respectively. The estimated photolysis rate constants ranged from less than (3.4 ± 0.3) × 10-7 s-1 (permethrin; >47.2 days) to (3.8 ± 0.2) × 10-5 s-1 (Fipronil; 0.4 days), depending on the considered compound. Moreover, this study assessed the influence of pesticide mixtures on their photolysis rates, revealing that certain pesticides can act as photosensitizers, thereby enhancing the reactivity of permethrin and tetraconazole. This study underscores the importance of considering photolysis degradation when evaluating pesticide fate and reactivity, as it can be a predominant degradation pathway for some pesticides. This contributes to an enhanced understanding of their behavior in the atmosphere and their impact on air quality.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39095632

RESUMO

The kinetic study of the gas-phase reactions of hydroxyl (OH) radicals and chlorine (Cl) atoms with CF3CHFCF2OCH3 (HFE-356mec3) and CHF2CHFOCF3 (HFE-236ea1) was performed by the pulsed laser photolysis/laser-induced fluorescence technique and a relative method by using Fourier Transform infrared (FTIR) spectroscopy as detection technique. The temperature dependences of the OH-rate coefficients (kOH(T) in cm3s-1) between 263 and 353 K are well described by the following expressions: 9.93 × 10-13exp{-(988 ± 35)/T}for HFE-356mec3 and 4.75 × 10-13exp{-(1285 ± 22)/T} for HFE-236ea1. Under NOx-free conditions, the rate coefficients kCl at 298 K and 1013 mbar (760 Torr) of air were determined to be (2.30 ± 1.08) × 10-13 cm3s-1and (1.19 ± 0.10) × 10-15 cm3s-1, for HFE-356mec3 and HFE-236ea1, respectively. Additionally, the relative kinetic study of the Cl + CH2ClCHCl2 reaction was investigated at 298 K, as it was used as a reference reaction in the kinetic study of the Cl-reaction with HFE-356mec3 and discrepant rate coefficients were found in the literature. The global atmospheric lifetimes were estimated relative to CH3CCl3 at the tropospheric mean temperature (272 K) as 1.4 and 8.6 years for HFE-356mec3 and HFE-236ea1, respectively. These values combined with the radiative efficiencies for HFE-356mec3 and HFE-236ea1 derived from the measured IR absorption cross sections (0.27 and 0.41 W m-2 ppv-1) yield global warming potentials at a 100-yrs time horizon of 143 and 1473, respectively. The contribution of HFE-356mec3 and HFE-236ea1 to global warming of the atmosphere would be large if they become widespread increasing their atmospheric concentration.

5.
Sci Total Environ ; 928: 172321, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604373

RESUMO

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

6.
Sci Total Environ ; 723: 137951, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32392691

RESUMO

A molecular derivatization method followed by gas chromatographic separation coupled with mass spectrometric detection was used to study photolytic degradation of I2 adsorbed on solid SiO2 particles. This heterogeneous photodegradation of I2 is studied at ambient temperature in synthetic air to better understand I2 atmospheric dispersion and environmental fate. The obtained laboratory results show a considerably enhanced atmospheric lifetime of molecular iodine adsorbed on solid media. The heterogeneous atmospheric residence time (τ) of I2 is calculated to be τ ≈ 187 min, i.e., τ ≈ 3 h. The obtained heterogeneous lifetime of I2 is shown to be considerably longer than its destruction by its principal atmospheric sink, namely, photolysis. The observed enhanced atmospheric lifetime of I2 on heterogeneous media will likely have direct consequences on the atmospheric transport of I2 that influences the toxicity or the oxidative capacity of the atmosphere.

7.
Huan Jing Ke Xue ; 39(2): 626-632, 2018 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964824

RESUMO

Two diesel buses respectively certified to meet China Ⅲ and China Ⅴ emission standards were used as prototype vehicles, fixed on a heavy-duty chassis dynamometer and driven according to a typical city bus driving cycle to analyze the pollutant emissions and volatile organic compounds (VOCs). The buses were fueled with diesel and waste cooking oil based biodiesel with 10 vol% blend ratio (B10). The emissions of total hydrocarbon(THC), CO, particulate matter (PM), and the number of solid particles with a diameter of 23 nm to 2.5 µm (referred to as "solid particulate number of PM2.5") from the bus certified to meet China Ⅴ (referred to as "China V bus") were 39.3%, 19.9%, 77.4%, and 28.4% lower than those from the other bus certified to meet China Ⅲ (referred to as "China Ⅲ bus"), while NOx emissions were 31.7% higher. Moreover, alkanes, alkenes, aromatic hydrocarbons, and oxygenated compounds in VOCs emitted from the China V bus were lower than those emitted from the China Ⅲ bus, suggesting lower atmospheric reactivity and smaller potential of secondary organic aerosol formation. Compared with the emission results of two diesel-fueled buses, the B10-fueled buses emitted smaller amounts of THC, CO, PM, and solid particulate number of PM2.5, lower oxygenated compounds but higher alkenes; slightly higher NOx emissions than China Ⅲ but slightly lower NOx emissions than China V. Consequently, the atmospheric reactivity of VOCs in exhaust gas from the bus fueled with B10 was higher than that from the diesel-powered bus.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis/análise , Veículos Automotores , Emissões de Veículos/análise , China , Cidades , Culinária , Óleos , Material Particulado
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa