Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Environ Sci Health B ; 58(2): 131-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36727586

RESUMO

Agrilus planipennis Fairmaire is an important wood boring pest of Fraxinus species in the family Oleaceae. Oxacyclotridecan-2-one is an attractant of A. planipennis. Traps with attractive lures can be used in mass trapping of insect pests, but the traps are a bit expensive and they must be set up and dismantled in the field. To develop an attract and kill method for A. planipennis, we enveloped oxacyclotridecan-2-one into sustained-released microspheres. The attractant microspheres were prepared using the solvent evaporation method. An orthogonal test L16(45) was used to optimize the five preparation factors: the quantities of polylactic acid (PLA), gelatin, Polyvinyl alcohol (PVA), attractant, and the rotational speed. The results showed that optimal conditions for preparation of microspheres were 2.5 g PLA, 0.5 g gelatin, 1.25 g PVA, 2 mL attractant and 600 r min-1 rotational speed. The encapsulation efficiency of the prepared microspheres was 95.22%, and the attractant loading rate was 15.61%. The release rate of attractant from prepared microspheres was about 26.74% on the first day, and then gradually entered a sustained-release stage for about 10 days that lasted for 17 days. Preliminary field control experiments showed that the prepared microspheres could attract and kill A. planipennis adults when sprayed together with insecticide.


Assuntos
Besouros , Inseticidas , Animais , Larva , Gelatina , Microesferas , Inseticidas/farmacologia
2.
Plant Dis ; 105(8): 2169-2176, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33258435

RESUMO

Meloidogyne incognita causes large-scale losses of agricultural crops worldwide. The natural metabolite furfural acetone has been reported to attract and kill M. incognita, but whether the attractant and nematicidal activities of furfural acetone on M. incognita function simultaneously in the same system, especially in three-dimensional spaces or in soil, is still unknown. Here, we used 23% Pluronic F-127 gel and a soil simulation device to demonstrate that furfural acetone has a significant attract-and-kill effect on M. incognita in both three-dimensional model systems. At 24 h, the chemotaxis index and the corrected mortality of nematodes exposed to 60 mg/ml of furfural acetone in 23% Pluronic F-127 gel were as high as 0.82 and 74.44%, respectively. Soil simulation experiments in moist sand showed that at 48 h, the chemotaxis index and the corrected mortality of the nematode toward furfural acetone reached 0.63 and 82.12%, respectively, and the effect persisted in the presence of tomato plants. In choice experiments, nematodes selected furfural acetone over plant roots and were subsequently killed. In pot studies, furfural acetone had a control rate of 82.80% against M. incognita. Collectively, these results provide compelling evidence for further investigation of furfural acetone as a novel nematode control agent.


Assuntos
Solanum lycopersicum , Tylenchoidea , Acetona , Animais , Antinematódeos/farmacologia , Furaldeído
3.
World J Microbiol Biotechnol ; 37(9): 156, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406525

RESUMO

The control of root-feeding wireworms has become more challenging as synthetic soil insecticides have been progressively phased out due to environmental risk concerns. Innovative microbial control alternatives such as the so-called attract-and-kill strategy depend on the rapid and successful development of dried encapsulated microorganisms, which is initiated by rehydration. Casein is a functional additive that is already used in food or pharmaceutical industry due to its water binding capacity. Cross-linked forms such as formalin-casein (FC), exhibit altered network structures. To determine whether FC influences the rehydration of alginate beads in order to increase the efficacy of an attract-and-kill formulation for wireworm pest control, we incorporated either casein or FC in different alginate/starch formulations. We investigated the porous properties of alginate/starch beads and subsequently evaluated the activities of the encapsulated entomopathogenic fungus Metarhizium brunneum and the CO2 producing yeast Saccharomyces cerevisiae. Adding caseins altered the porous structure of beads. FC decreased the bead density from (1.0197 ± 0.0008) g/mL to (1.0144 ± 0.0008) g/mL and the pore diameter by 31%. In contrast to casein, FC enhanced the water absorbency of alginate/starch beads by 40%. Furthermore, incorporating FC quadrupled the spore density on beads containing M. brunneum and S. cerevisiae, and simultaneous venting increased the spore density even by a factor of 18. Moreover, FC increased the total CO2 produced by M. brunneum and S. cerevisiae by 29%. Thus, our findings suggest that rehydration is enhanced by larger capillaries, resulting in an increased water absorption capacity. Our data further suggest that gas exchange is improved by FC. Therefore, our results indicate that FC enhances the fungal activity of both fungi M. brunneum and S. cerevisiae, presumably leading to an enhanced attract-and-kill efficacy for pest control.


Assuntos
Caseínas/química , Composição de Medicamentos/métodos , Formaldeído/química , Metarhizium/química , Saccharomyces cerevisiae/química , Água/química , Adsorção , Alginatos/química , Animais , Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Composição de Medicamentos/instrumentação , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metarhizium/fisiologia , Controle Biológico de Vetores , Porosidade , Saccharomyces cerevisiae/fisiologia
4.
J Chem Ecol ; 46(8): 688-698, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31879864

RESUMO

The olfactory cues used by various animals to detect and identify food items often include volatile organic compounds (VOCs) produced by food-associated microorganisms. Microbial VOCs have potential as lures to trap animal pests, including insect crop pests. This study investigated microorganisms whose VOCs are attractive to natural populations of the spotted wing drosophila (SWD), an invasive insect pest of ripening fruits. The microorganisms readily cultured from wild SWD and SWD-infested fruits included yeasts, especially Hanseniaspora species, and various bacteria, including Proteobacteria (especially Acetobacteraceae and Enterobacteriaceae) and Actinobacteria. Traps in a raspberry planting that were baited with cultures of Hanseniaspora uvarum, H. opuntiae and the commercial lure Scentry trapped relatively high numbers of both SWD and non-target drosophilids. The VOCs associated with these baits were dominated by ethyl acetate and, for yeasts, other esters. By contrast, Gluconobacter species (Acetobacteraceae), whose VOCs were dominated by acetic acid and acetoin and lacked detectable ethyl acetate, trapped 60-75% fewer SWD but with very high selectivity for SWD. VOCs of two other taxa tested, the yeast Pichia sp. and Curtobacterium sp. (Actinobacteria), trapped very few SWD or other insects. Our demonstration of among-microbial variation in VOCs and their attractiveness to SWD and non-pest insects under field conditions provides the basis for improved design of lures for SWD management. Further research is required to establish how different microbial VOC profiles may function as reliable cues of habitat suitability for fly feeding and oviposition, and how this variation maps onto among-insect species differences in habitat preference.


Assuntos
Sinais (Psicologia) , Drosophila/fisiologia , Percepção Olfatória , Compostos Orgânicos Voláteis/metabolismo , Actinobacteria/química , Animais , Feminino , Hanseniaspora/química , Masculino , Proteobactérias/química , Distribuição Aleatória
5.
Ecotoxicol Environ Saf ; 183: 109490, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398582

RESUMO

Toxic bait formulations have been one of the main strategies used in apple orchards in southern Brazil for the control of South American fruit fly. However, its effects on the stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) are unknown. This study aimed to assess the toxicity, attraction and repellency of food lures and toxic baits on P. emerina and T. fiebrigi. We evaluated the food lures Anamed® (pure), Biofruit® (3%), Flyral® (1.25%), Sugarcane molasses (7%) and Samaritá Tradicional® (3%), in toxic baits formulations associated with spinosad (Tracer® 480SC) and malathion (Malathion® 1000EC), and the ready-to-use toxic baits Success® 0.02CB and Gelsura®. We obtained the mean lethal concentration (LC50) and the mean survival of workers after exposure to toxic bait formulations. In the field, we carried out attraction and repellency tests of toxic baits to foraging. The food lures associated with malathion and spinosad showed different levels of toxicity to P. emerina and T. fiebrigi. Sugarcane molasses and Samaritá Tradicional® associated with spinosad showed high toxicity, with LC50 values of 6.92 and 10.61 ng/µL diet to P. emerina, and of 4.37 and 15.48 ng/µL diet to T. fiebrigi, respectively. Gelsura® and food lures with malathion caused rapid workers mortality, with mean survival less than 3 h after exposure. No toxic bait formulation was attractive to P. emerina foragers in the field. Anamed®, Gelsura®, and Success® were repellent to P. emerina foragers.


Assuntos
Abelhas/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/toxicidade , Animais , Abelhas/fisiologia , Brasil , Drosophila , Combinação de Medicamentos , Inseticidas/química , Dose Letal Mediana , Macrolídeos/química , Macrolídeos/toxicidade , Malation/química , Malation/toxicidade , Análise de Sobrevida
6.
Annu Rev Entomol ; 63: 453-470, 2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-29058978

RESUMO

Attract-and-kill has considerable potential as a tactic in integrated management of pests of agricultural crops, but the use of sex pheromones as attractants is limited by male multiple mating and immigration of mated females into treated areas. Attractants for both sexes, and particularly females, would minimize these difficulties. Volatile compounds derived from plants or fermentation of plant products can attract females and have been used in traps for monitoring and control, and in sprayable attract-and-kill formulations or bait stations. Recent advances in fundamental understanding of insect responses to plant volatiles should contribute to the development of products that can help manage a wide range of pests with few impacts on nontarget organisms, but theory must be tempered with pragmatism in the selection of volatiles and toxicants and in defining their roles in formulations. Market requirements and regulatory factors must be considered in parallel with scientific constraints if successful products are to be developed.


Assuntos
Controle de Insetos/métodos , Insetos , Atrativos Sexuais , Agricultura , Animais , Transferência de Tecnologia , Compostos Orgânicos Voláteis
7.
World J Microbiol Biotechnol ; 33(4): 71, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28289929

RESUMO

CO2 is known as a major attractant for many arthropod pests which can be exploited for pest control within novel attract-and-kill strategies. This study reports on the development of a slow-release system for CO2 based on calcium alginate beads containing granular corn starch, amyloglucosidase and Saccharomyces cerevisiae. Our aim was to evaluate the conditions which influence the CO2 release and to clarify the biochemical reactions taking place within the beads. The amyloglucosidase was immobilized with a high encapsulation efficiency of 87% in Ca-alginate beads supplemented with corn starch and S. cerevisiae biomass. The CO2 release from the beads was shown to be significantly affected by the concentration of amyloglucosidase and corn starch within the beads as well as by the incubation temperature. Beads prepared with 0.1 amyloglucosidase units/g matrix solution led to a long-lasting CO2 emission at temperatures between 6 and 25 °C. Starch degradation data correlated well with the CO2 release from beads during incubation and scanning electron microscopy micrographs visualized the degradation of corn starch granules by the co-encapsulated amyloglucosidase. By implementing MALDI-ToF mass spectrometry imaging for the analysis of Ca-alginate beads, we verified that the encapsulated amyloglucosidase converts starch into glucose which is immediately consumed by S. cerevisiae cells. When applied into the soil, the beads increased the CO2 concentration in soil significantly. Finally, we demonstrated that dried beads showed a CO2 production in soil comparable to the moist beads. The long-lasting CO2-releasing beads will pave the way towards novel attract-and-kill strategies in pest control.


Assuntos
Dióxido de Carbono/metabolismo , Glucana 1,4-alfa-Glucosidase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Amido/química , Alginatos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Microesferas , Controle Biológico de Vetores/métodos , Solo/química , Temperatura
8.
J Chem Ecol ; 42(7): 666-75, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380035

RESUMO

We discuss the principles of bisexual attract-and-kill, in which females as well as males are targeted with an attractant, such as a blend of plant volatiles, combined with a toxicant. While the advantages of this strategy have been apparent for over a century, there are few products available to farmers for inclusion in integrated pest management schemes. We describe the development, registration, and commercialization of one such product, Magnet(®), which was targeted against Helicoverpa armigera and H. punctigera in Australian cotton. We advocate an empirical rather than theoretical approach to selecting and blending plant volatiles for such products, and emphasise the importance of field studies on ecologically realistic scales of time and space. The properties required of insecticide partners also are discussed. We describe the studies that were necessary to provide data for registration of the Magnet(®) product. These included evidence of efficacy, including local and area-wide impacts on the target pest, non-target impacts, and safety for consumers and applicators. In the decade required for commercial development, the target market for Magnet(®) has been greatly reduced by the widespread adoption of transgenic insect-resistant cotton in Australia. We discuss potential applications in resistance management for transgenic cotton, and for other pests in cotton and other crops.


Assuntos
Fenômenos Ecológicos e Ambientais , Controle de Insetos/métodos , Inseticidas/farmacologia , Atrativos Sexuais/farmacologia , Animais , Feminino , Controle de Insetos/legislação & jurisprudência , Inseticidas/química , Masculino , Atrativos Sexuais/química , Controle Social Formal , Volatilização
9.
J Chem Ecol ; 42(7): 676-88, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27388286

RESUMO

Responses of non-target insects to a blend of plant volatiles used as components in an attract-and-kill formulation for Helicoverpa spp. (Lepidoptera: Noctuidae) were studied in an Australian cotton field. Two experiments, one involving suction sampling during the day and the other at night, were conducted. Rows that had been treated with the volatile blend, with no added insecticide, were sampled with a large suction sampler 18, 42, and 85 h (day experiment) and 6, 30, and 78 h (night experiment) after treatment. Rows located 5, 10, 20, and 300 m away from the treated row were similarly sampled. Of seven generalist predators, only one accumulated on the treated rows compared to the untreated rows. Of the other six, five were found in lower numbers on the treated rows, and for one no significant effects were detected. Compared to pre-spray baseline levels, numbers of several taxa increased across the whole field after spraying, suggesting area-wide attraction, but localized responses to the treated rows were weak, and apparent repellence was more common than attraction. We suggest that attract-and-kill with plant volatiles should have minimal effects on populations of these predators, and is likely to be compatible with integrated pest management.


Assuntos
Composição de Medicamentos , Controle de Insetos/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Comportamento Predatório , Animais , Volatilização
10.
Pest Manag Sci ; 80(10): 5131-5140, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38864543

RESUMO

BACKGROUND: Attract-and-kill (AK) beads are biological, microbial insecticides developed as an alternative to synthetic soil insecticides. For wireworm control, beads are based on calcium alginate/starch co-encapsulating the carbon dioxide (CO2) producing yeast Saccharomyces cerevisiae H205 as the attract component, and the entomopathogenic fungus Metarhizium brunneum CB15-III as the kill component. However, the physicochemical processes inside beads during co-cultivation are still unclear. Here we reveal for the first time the spatiotemporal conditions of oxygen and pH inside AK beads measured with microelectrodes and describe the impact of S. cerevisiae on CO2 and conidia formation. RESULTS: Measurements revealed a steep oxygen gradient already 2 days after co-encapsulation, with an internal hypoxic zone. Encapsulating either S. cerevisiae or M. brunneum already decreased the average pH from 5.5 to 4.7 and 4.6, respectively. However, on day 3, co-cultivation lead to temporal strong acidification of beads down to pH 3.6 which followed the maximum CO2 productivity and coincided with the maximum conidiation rate. Decreasing the yeast load decreased the total CO2 productivity to half, and the conidial production by 93%, while specific productivities normalized to 1% yeast load increased eight-fold and three-fold, respectively, with day 3 being an exception. CONCLUSION: Our findings indicate a general beneficial interaction between M. brunneum and S. cerevisiae, but also suggest competition for resources. These findings will contribute to develop innovative co-formulations with maximum efficiency to save application rates and costs. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Alginatos , Dióxido de Carbono , Metarhizium , Saccharomyces cerevisiae , Metarhizium/fisiologia , Metarhizium/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/química , Dióxido de Carbono/metabolismo , Controle Biológico de Vetores , Concentração de Íons de Hidrogênio , Esporos Fúngicos , Animais , Técnicas de Cocultura
11.
Pest Manag Sci ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305072

RESUMO

BACKGROUND: Many studies have demonstrated that tephritid fruit fly larvae are highly susceptible to entomopathogenic nematodes (EPNs) and may become infected as they enter the soil to pupate. However, the susceptibility of adult tephritids and their suitability as EPN targets have been less studied. We performed laboratory assays with 12 Australian EPN strains of Heterorhabditis bacteriophora, Heterorhabditis indica and Heterorhabditis zealandica in adults of the Queensland fruit fly, Bactrocera tryoni. Infective juveniles were delivered in a yeast hydrolysate solution that is attractive to flies. We also measured the flight ability of adults up to 3 days after treatment. RESULT: Flies that consumed the EPN-yeast preparation experienced 72.8-84% mortality. Between 33.5% and 46.2% of EPN-treated adults were still able to fly before death following treatment, mostly within the first day, thereby contributing to EPN dispersal. Another 31.9-39.9% of EPN-treated flies that were unable to fly died as a result of EPN treatment. Overall, >65% of flies that died following EPN treatment had visible signs of infection and EPN reproduction. CONCLUSION: Our study is foundational to the development of attract-and-kill and autodissemination approaches involving EPNs in fruit fly control. Furthermore, H. indica and H. zealandica strains showed the highest potential as biocontrol agents against adult flies. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

12.
Plants (Basel) ; 13(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256793

RESUMO

Device structure, light source height, and climatic factors can potentially affect the catching of target pests in light traps. In this study, the installation of an anti-escape cover in a newly designed light trap significantly increased the number of catches of tea leafhoppers, Empoasca onukii, an economically significant pest of tea gardens, and it prevented 97.95% of leafhoppers from escaping. A series of assessments were performed in the field and showed that the optimal trapping window of the light trap was between 1.5 and 2.5 h (2 ± 0.35 h) after sunset, and the starting time of the window was positively correlated with the sunset time. The number of leafhopper catches decreased sharply when the height of the light source was above the flight height range of E. onukii adults. The height of the light source was optimal between 20 and 40 cm above the tea canopy. The efficacy of the light traps for capturing leafhoppers decreased in the autumn peak period. High numbers of leafhopper catches by the newly designed light trap in the summer could reduce E. onukii population sizes in the autumn. Overall, the newly designed light trap can be used to reduce E. onukii adult populations in tea gardens.

13.
AMB Express ; 13(1): 72, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432529

RESUMO

Polyvinyl alcohol (PVA) is a biodegradable, water-soluble polymer with excellent film forming properties, commonly studied or used as tablet coating, food packaging or controlled release fertilizers. Attract-and-kill (AK) beads are sustainable, microbial alternatives to synthetic soil insecticides, whose onset of lethal effect largely depend on how fast the encapsulated entomopathogenic fungus forms virulent conidia. Therefore, the objective of this study was to develop a water-soluble coating accelerating the kill effect of AK beads by immediately releasing virulent Metarhizium brunneum CB15-III blastospores. We assessed three PVA types (PVA 4-88, 8-88, 10-98) which differed in their degree of hydrolysis or molecular weight for their ability to release viable blastospores from thin films after drying at 60-40 °C, and examined how polyethylene glycol and soy-lecithin impact the blastospore survival. Finally, we evaluated the effectiveness of coated AK beads in a bioassay against Tenebrio molitor larvae. The blastospore release rate quadrupled within the first 5 min with decreasing molecular weight and degree of hydrolysis, with PVA 4-88 releasing 79 ± 19% blastospores. Polyethylene glycol and soy-lecithin significantly increased the blastospore survival to 18-28% for all three PVA types. Coated beads exhibited a uniform, 22.4 ± 7.3 µm thin coating layer, with embedded blastospores, as confirmed by scanning electron microscopy. The blastospore coating increased the mortality rate of T. molitor larvae over uncoated AK beads, decreasing the median lethal time from 10 to 6 days. Consequently, the blastospore coating accelerated the kill effect of regular AK beads. These findings pave the way to enhanced pest control efficacy from coated systems such as beads or seeds.

14.
Pest Manag Sci ; 79(1): 428-436, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36177948

RESUMO

BACKGROUND: Host plant-microbe associations mediate interspecific interactions amongst herbivorous insects. However, this theory has rarely been ecologically verified in tephritid fruit flies. Research on this subject can not only help predict tephritid species invasion and occurrence patterns, but also develop potential novel lures for the control of the tephritid fruit fly pests. Recently, we observed mixed infestation of Bactrocera minax and Bactrocera dorsalis larvae in citrus orchards, which prompted us to explore the underlying mechanism. RESULTS: Following oviposition by B. minax, the yeast Pichia kluyveri translocated to and proliferated inside the citrus fruit. The level of d-limonene released from citrus fruits containing P. kluyveri was 27 times higher than that released from healthy fruits. Mature B. dorsalis females were attracted to d-limonene and oviposited into fruits previously infested by B. minax. Furthermore, the interspecific interaction between B. dorsalis and B. minax within the same fruit significantly decreased the number of surviving larvae and pupal weight in B. dorsalis, but its effect on B. minax was weaker. CONCLUSION: In the studied interspecific interaction, B. minax occupies the dominant position, implying ecological significance for this species in terms of consolidating its own niche and inhibiting the invasion of exotic species. To our best knowledge, this is the first report from both ecological and physiological perspectives on a symbiotic yeast mediating the interaction between B. minax and B. dorsalis through altering fruit volatiles. © 2022 Society of Chemical Industry.


Assuntos
Saccharomyces cerevisiae
15.
Insects ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233050

RESUMO

Huanglongbing (HLB), the most serious disease in citriculture, is caused by the bacteria Candidatus Liberibacter spp., which is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. HLB is mainly controlled with insecticides, necessitating the development of alternative methods, e.g., the use of trap plants such as curry leaf Bergera koenigii, which is highly attractive to the ACP. We evaluated the effects of the main systemic insecticides used by citrus growers, applied via drench to adults of D. citri on the curry leaf tree. We tested the persistence of three pesticides: thiamethoxam, thiamethoxam + chlorantraniliprole, and imidacloprid in protected cultivation and the field condition at 7, 14, 28, 42, 56, 70, 98, and 154 days after the application. Different concentrations of insecticides containing the active ingredient thiamethoxam were tested on adults to determine the LC10 and LC50. Finally, we assessed the sublethal effects on the oviposition and development of D. citri. The insecticides controlled the adults for long periods. However, in the field experiment, from 42 days after application there was a decrease in mortality caused by pesticides applied via drench, while in the protected cultivation, mortality did not decline until the last day of evaluation. The median lethal concentration (LC50) for thiamethoxam was 0.031 g of active ingredient per plant, and for thiamethoxam in a mixture, the LC50 was 0.028 g a.i. per plant. In the experiment with sublethal doses, D. citri did not oviposit on the treated plants. Our findings suggest that the attract-and-kill system using the curry leaf tree and systemic insecticides is effective for the control of D. citri and contributes to the integrated management of HLB.

16.
J Econ Entomol ; 116(1): 202-208, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36617300

RESUMO

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a key pest of many berry and fruit crops worldwide. The primary method of controlling this pest is the application of insecticides. Attract-and-kill is a management tactic that may reduce the number of insecticide applications needed to manage D. suzukii. ACTTRA SWD OR1 and ACTTRA SWD TD, developed by ISCA Technologies Inc., combine D. suzukii attractants with a gel matrix. Growers add an insecticide as a killing agent. The only USDA National Organic Program approved organic insecticide that has been shown to be effective as a killing agent is spinosad. This study aimed to determine the efficacy of other USDA National Organic Program approved organic insecticides, including Grandevo 30 WDG (Chromobacterium subtsugae strain PRAA4-1 30%), MBI-203 SC2 (C. subtsugae strain PRAA4-1 98%), Venerate XC (Burkholderia spp. Strain A396 94.45%), MBI-306 SC1 (B. rinojensis Strain A396 94.45%), Azera (azadirachtin 1.2% + pyrethrins 1.4%), and PyGanic (pyrethrins 1.4%), when used as the killing agent with the two ACTTRA SWD products. Lab and cage bioassays were conducted. Entrust (spinosad 22.5%) and PyGanic were the only compounds that showed some efficacy when used with ACTTRA SWD OR1 and ACTTRA SWD TD.


Assuntos
Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Drosophila , Controle de Insetos/métodos , Frutas
17.
J Econ Entomol ; 116(2): 505-512, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881679

RESUMO

Carpophilus davidsoni (Dobson) is an important pest of Australian stone fruit. Current management practices for this beetle include the use of a trap that contains an attractant lure comprised of aggregation pheromones and a 'co-attractant' mixture of volatiles from fruit juice fermented using Baker's yeast, Saccharomyces cerevisiae (Hansen). We explored whether volatiles from yeasts Pichia kluyveri (Bedford) and Hanseniaspora guilliermondii (Pijper), which are closely associated with C. davidsoni in nature, might improve the effectiveness of the co-attractant. Field trials using live yeast cultures revealed that P. kluyveri trapped higher numbers of C. davidsoni compared to H. guilliermondii, and comparative GC-MS of volatile emissions of the two yeasts led to the selection of isoamyl acetate and 2-phenylethyl acetate for further investigation. In subsequent field trials, trap catches of C. davidsoni were significantly increased when 2-phenylethyl acetate was added to the co-attractant, compared to when isoamyl acetate was added, or both isoamyl acetate and 2-phenylethyl acetate. We also tested different concentrations of ethyl acetate in the co-attractant (the only ester in the original lure) and found contrasting results in cage bioassays and field trails. Our study demonstrates how exploring volatile emissions from microbes that are ecologically associated with insect pests can result in more potent lures for use in integrated pest management strategies. Results from laboratory bioassays screening volatile compounds should be treated with caution when making inferences regarding attraction under field conditions.


Assuntos
Besouros , Animais , Frutas , Austrália , Leveduras , Feromônios
18.
J Econ Entomol ; 115(3): 826-834, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35419599

RESUMO

In Australia, destruction of overwintering pupae of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) has been a key component of mandatory resistance management schemes to constrain development of resistance to Bt toxins in transgenic cotton. This has been accomplished by tillage ('pupae busting'), but it is expensive and can interfere with farming operations. Bisexual attract-and-kill technology based on plant volatile formulations offers a potential alternative in some circumstances. We discuss strategies for using such products and describe two trials in which three applications of an attract-and-kill formulation substantially reduced the numbers of Helicoverpa spp. moths and the numbers of potentially overwintering eggs they laid. One trial tested a curative strategy in which the last generation of moths emerging from transgenic cotton was targeted. The other tested a preventive strategy which aimed to reduce the numbers of eggs in the last generation. The preventive strategy reduced egg numbers by about 90% and is now included as an optional alternative to pupae busting in resistance management strategies for Australian cotton. It is limited to fields which have not been defoliated prior to 31 March and was developed to be used primarily in southern New South Wales. In the 2020-2021 cotton season, it was adopted on approximately 60% of the eligible cotton area. We describe the process whereby the strategy was developed in collaboration with the transgenic technology provider, supported by the cotton industry, and approved by the regulatory authority.


Assuntos
Mariposas , Minorias Sexuais e de Gênero , Animais , Austrália , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas , Humanos , Resistência a Inseticidas , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Pupa
19.
J Econ Entomol ; 115(4): 981-989, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35078242

RESUMO

In the continental United States, the invasive spotted-wing drosophila (SWD), Drosophila suzukii Matsumura, has become a primary pest of multiple stone and soft-skinned fruits. A new innovative adjuvant formulation, ACTTRA SWD, mixed with a suitable insecticide, constitutes a novel attract-and-kill tactic to manage D. suzukii in fruit crops. We hypothesized that background odors present in crop fields, particularly odors from host fruits, negatively affect the effectiveness of this attract-and-kill formulation, as odors from these sources can compete for insect attraction. Additionally, we evaluated the influence of adult D. suzukii sex and physiological status (age and mating status), and fruit ripeness on its response to the ACTTRA SWD formulation. For this, we used two-choice bioassays to test the response of adult D. suzukii to three ACTTRA SWD formulations (named OR1, TD, and HOOK SWD) in the presence and absence of host fruits (blueberries, raspberries, blackberries, and strawberries). Odors from raspberries were significantly more attractive than those from the TD formulation mixed with spinosad (Entrust). For the HOOK SWD formulation and OR1+Entrust formulation, odors from all the fruit types tested were significantly more attractive than the adjuvants. Compared with females, male D. suzukii were more attracted to the TD formulation over the blueberry fruits. Additionally, age and female mating status but not fruit ripeness influenced D. suzukii attraction to both OR1 and TD formulations. The results from this study indicate that D. suzukii physiological status and host fruit availability impact the efficacy of new attract-and-kill adjuvants such as ACTTRA SWD.


Assuntos
Mirtilos Azuis (Planta) , Rubus , Animais , Drosophila/fisiologia , Feminino , Frutas , Controle de Insetos/métodos , Masculino
20.
J Econ Entomol ; 115(1): 201-211, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34865020

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a serious threat to the U.S. citrus industry because it spreads huanglongbing (HLB), a bacterial and incurable citrus disease. The nymphal parasitoid, Tamarixia radiata Waterston (Hymenoptera: Eulophidae), has been extensively released for biological control of D. citri in South Texas since 2010 but provides insufficient control. An 'attract-and-kill' (AK) device was evaluated for its compatibility with T. radiata for suppression of D. citri on dooryard citrus. The AK device is visually attractive to D. citri adults because it is the same color as young citrus flush and kills individuals on contact with the toxicant beta-cyfluthrin. This study evaluated 1) lethality of AK devices to T. radiata adults under lab conditions; 2) efficacy of AK devices for year-round psyllid suppression on individual dooryard lemon trees; 3) discovery and parasitism of D. citri colonies by T. radiata on lemon trees with or without AK devices. Contact with AK devices for 5 s or more was lethal to adult parasitoids. Deployment of 20 AK devices per tree provided significant year-round suppression of D. citri on infested lemon trees and reduced mean attack intensity (cumulative psyllid-days) of adults by 66% and nymphs by 82%. Discovery and parasitism rates of D. citri colonies by T. radiata were similar on control trees and trees protected by AK devices. An AK device that targets adult psyllids could be used to effectively complement biological control of D. citri by T. radiata in residential landscapes.


Assuntos
Citrus , Hemípteros , Doenças das Plantas , Animais , Hemípteros/microbiologia , Nitrilas , Controle Biológico de Vetores , Piretrinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa