Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Nano Lett ; 24(8): 2451-2456, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358313

RESUMO

Herein, we present a new and simple electrochemical method to detect the intracellular electroactive substances by utilizing the electron tunnelling processes at the metal nanoparticles inside the cells. Intriguing discrete oxidation and reduction current spikes are obtained when testing the cells with loaded Au nanoparticles at the ultramicroelectrodes, which should come from reactive oxygen species (ROS) inside the single cell. The charges enclosed in the current spikes represent the ROS content inside the living cells, as confirmed by the fluorescence studies. As this simple electron tunnelling approach needs no nanoelectrodes or nanotip penetration processes, we believe it could have great potential applications in electrochemical analysis of single living cells.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio , Elétrons , Eletrodos , Membrana Celular
2.
Small ; : e2312102, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415950

RESUMO

Although lithium-sulfur batteries (LSBs) are considered as the promising next rechargeable storage system ascribing to their decent specific capacity of inorganic sulfur, the development is partially impeded by inferior electronic conductivity, severe shuttle effect, and large volume variation. To tackle the issues above, a great deal of effort is made on sulfur-containing polymer (SCP) that shows better electrochemical performance. Nevertheless, sluggish conversion of lithium polysulfides (LiPSs) obstructs battery performance yet. Herein, electrocatalytic LiPSs with full conversion by tailoring the interfacial electric field are discovered based on gold nanoparticles (AuNPs) anchored on sulfurized polyaniline (SPANI). A downhill path of Gibbs free energy from organosulfur polymer to intermediate product means more spontaneously and favorable for full conversion, as the significant enhancement of electron density of state in the vicinity of the HOMO level for the AuNPs increase the electron transition probability rate. This composite delivers satisfactory electrochemical performance, especially increased rate capacity of >300 mAh g-1 . Furthermore, catalyst mechanism on molecule level is proposed that AuNPsdominate chemical enhancement and higher electron delocalizablility betweenAuNPs and LiPSs molecules. These results can erect a promising strategy for enhancing lithium polysulfides full conversion.

3.
Small ; 20(19): e2311712, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258404

RESUMO

Water-hexane interfacial preparation of photostable Au@CsPbBr3 (Au@CPB) hybrid nanocrystals (NCs) from pure CsPbBr3 (CPB) NCs is reported, with the coexistence of exciton and localized surface plasmon resonance with equal dominance. This enables strong exciton-plasmon coupling in these plasmonic perovskite NCs where not only the photoluminescence is quenched intrinsically due to ultrafast charge separation, but also the light absorption property increases significantly, covering the entire visible region. Using a controlled interfacial strategy, a reversible chemical transformation between CPB and Au@CPB NCs is shown, with the simultaneous eruption of larger-size ligand-free aqueous Au nanoparticles (NPs). An adsorption-desorption mechanism is proposed for the reversible transformation, while the overgrowth reaction of the Au NPs passes through the Au aggregation intermediate. This study further shows that the plasmonic Au@CPB hybrid NCs as well as ligand-free Au NPs exhibit clear surface enhanced Raman scattering (SERS) effect of a commercially available probe molecule. Overall, the beautiful interfacial chemistry delivers two independent plasmonic materials, i.e., Au@CPB NCs and ligand-free aqueous Au NPs, which may find important implications in photocatalytic and biomedical applications.

4.
Small ; 20(27): e2309502, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282176

RESUMO

Accurate detection of trace tetracyclines (TCs) in complex matrices is of great significance for food and environmental safety monitoring. However, traditional recognition and amplification tools exhibit poor specificity and sensitivity. Herein, a novel dual-machine linkage nanodevice (DMLD) is proposed for the first time to achieve high-performance analysis of TC, with a padlock aptamer component as the initiation command center, nucleic acid-encoded multispike virus-like Au nanoparticles (nMVANs) as the signal indicator, and cascade walkers circuit as the processor. The existence of spike vertices and interspike nanogaps in MVANs enables intense electromagnetic near-field focusing, allowing distinct surface-enhanced Raman scattering (SERS) activity. Moreover, through the sequential activation between multistage walker catalytic circuits, the DLMD system converts the limited TC recognition into massive engineering assemblies of SERS probes guided by DNA amplicons, resulting in synergistic enhancement of bulk plasmonic hotspot entities. The continuously guaranteed target recognition and progressively promoted signal enhancement ensure highly specific amplification analysis of TC, with a detection limit as low as 7.94 × 10-16 g mL-1. Furthermore, the reliable recoveries in real samples confirm the practicability of the proposed sensing platform, highlighting the enormous potential of intelligent nanomachines for analyzing the trace hazards in the environment and food.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Ouro/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Tetraciclina/análise , Tetraciclina/química , Técnicas Biossensoriais/métodos , Limite de Detecção
5.
Chemistry ; 30(30): e202401010, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38517333

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) has attracted much attention as a sustainable ammonia production technology, but it needs further exploration due to its slow kinetics and the existence of competitive side reactions. In this research, xAu/MIL-101(Fe) catalysts were obtained by loading gold nanoparticles (Au NPs) onto MIL-101(Fe) using a one-step reduction strategy. Herein, MIL-101(Fe), with high specific surface area and strong N2 adsorption capacity, is used as a support to disperse Au NPs to increase the electrochemical active surface area. Au NPs, with a high NRR activity, is introduced as the active site to promote charge transfer and intermediate formation rates. More importantly, the strong interaction between Au NPs and MIL-101(Fe) enhances the electron transfer between Au NPs and MIL-101(Fe), thereby enhancing the activation of N2 and achieving efficient NRR. Among the prepared catalysts, 15 %Au/MIL-101(Fe) has the highest NH3 yield of 46.37 µg h-1 mg-1 cat and a Faraday efficiency of 39.38 % at -0.4 V (vs. RHE). In-situ FTIR reveals that the NRR mechanism of 15 %Au/MIL-101(Fe) follows the binding alternating pathway and also indicates that the interaction between Au NPs and MIL-101(Fe) strengthens the activation of the N≡N bond in the rate-limiting process, thereby accelerating the NRR process.

6.
Nanotechnology ; 35(32)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608318

RESUMO

A comparative study of the plasmon effect of Ag and Au nanoparticles on TiO2/rGO nanocomposite was carried out. The synthesis of Au and Ag nanoparticles was carried out by laser ablation. The morphology and structure of the nanocomposites were studied by EDA, HRTEM, XRD and Raman spectroscopy. It was shown that the absorption capacity of the nanocomposite material was increased in the visible range of the spectrum when Ag and Au nanoparticles were added to TiO2/rGO. This leads to an increase in their photocatalytic activity. The photocurrent generated by NC/Au 10-11films is in 3.8 times and NC/Ag 10-12is in 2 times higher compared to pure TiO2/rGO film. Similar results were obtained from experimental data on the dyes photodegradation. In the presence of plasmon nanoparticles a significant enhancement in the electrical properties of the TiO2/rGO nanocomposite was recorded. The charge carrier transfer resistance in nanocomposites was decreased by almost ∼7 times for NC/Au,10-11and ∼4 times for NC/Ag,10-12films compared to pure TiO2/rGO. In addition, for nanocomposites with Ag or Au nanoparticles, a decrease in the effective electron lifetime was observed. The data obtained allow us to conclude that plasmonic NPs have a synergistic effect in TiO2/rGO nanocomposites, which consists in modifying both their light-harvesting properties and charge-transport characteristics. The results obtained can be used for the design of materials with improved photocatalytic and optoelectronic characteristics.

7.
Mikrochim Acta ; 191(3): 130, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351361

RESUMO

After optimizing the original aptamer sequence by truncation strategy, a magnetic separation-assisted DNAzyme-driven 3D DNA walker fluorescent aptasensor was developed for detecting the food-borne pathogen Cronobacter species. Iron oxide magnetic nanoparticles (MNPs) modified with a hybrid of truncated aptamer probe and DNAzyme strand (AP-E1) denoted as MNPs@AP-E1, were employed as capture probes. Simultaneously, a DNAzyme-driven 3D-DNA walker was utilized as the signal amplification element. The substrate strand (Sub) was conjugated with the gold nanoparticles (AuNPs), resulting in the formation of AuNPs@Sub, which served as a 3D walking track. In the presence of the target bacteria and Mg2+, E1-DNAzyme was activated and moved along AuNPs@Sub, continuously releasing the signal probe. Under optimized conditions, a strong linear correlation was observed for Cronobacter sakazakii (C. sakazakii) in the concentration range 101 to 106 CFU mL-1, with a low detection limit of 2 CFU mL-1. The fluorescence signal responses for different Cronobacter species exhibited insignificant differences, with a relative standard deviation of 3.6%. Moreover, the aptasensor was successfully applied to determine  C. sakazakii in real samples with recoveries of 92.86%-108.33%. Therefore, the novel method could be a good candidate for ultra-sensitive and selective detection of Cronobacter species without complex manipulation.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cronobacter , DNA Catalítico , Nanopartículas Metálicas , DNA Catalítico/genética , Ouro , Cronobacter/genética , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Limite de Detecção , DNA/genética
8.
Mikrochim Acta ; 191(4): 195, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478128

RESUMO

Transition metal carbides modified by Au nanoparticles (Au/Ti3C2) were synthesized and developed as a colorimetric sensor for the determination of H2O2 and ampicillin. The surface electrical properties of Ti3C2 were changed, and Au nanoparticles (AuNPs) and gold growth solution were synthesized simultaneously. Au/Ti3C2 was obtained by seed growth method with AuNPs modified on the surface of transition metal carbides, nitrides or carbon-nitrides (Ti3C2 MXenes). The synthesized AuNPs and Ti3C2 had no peroxidase-like activity, but Au/Ti3C2 had. The peroxidase catalytic mechanism was due to electron transfer. The peroxidase activity of Au/Ti3C2 can be utilized for the determination of H2O2. The linear range of Au/Ti3C2 for H2O2 was 1-60 µM, and the detection limit was 0.12 µM (S/N = 3). A colometric sensor for ampicillin detection based on Au/Ti3C2 was further constructed since S in ampicillin formed an Au-S bond with Au/Ti3C2, leading to the weakening of its peroxidase-like property. The change of peroxidase-like property attenuated oxidation of TMB, and the ampicillin content was inversely proportional to the concentration of oxidized TMB, and the blue color of solution faded, which enabled the determination of ampicillin. The linear range for ampicillin was 0.005-0.5 µg mL- 1, and the detection limit was 1.1 ng mL- 1 (S/N = 3). The sensor was applied to the detection of ampicillin in milk and human serum.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Titânio , Peroxidase/química , Peroxidases
9.
Mikrochim Acta ; 191(6): 328, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743383

RESUMO

The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.


Assuntos
Doença de Alzheimer , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Aptâmeros de Nucleotídeos/química , Proteínas tau/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Fosforilação , Biomarcadores/sangue
10.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792086

RESUMO

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Assuntos
Resinas Acrílicas , Ouro , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ouro/química , Fotoquimioterapia/métodos , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Resinas Acrílicas/química , Linhagem Celular Tumoral , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Antineoplásicos/farmacologia , Antineoplásicos/química
11.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474515

RESUMO

In this work, Au nanoparticle-decorated ZnO@graphene core-shell quantum dots (Au-ZnO@graphene QDs) were successfully prepared and firstly used to modify an ITO electrode for the construction of a novel photoelectrochemical biosensor (Au-ZnO@graphene QDs/ITO). Characterization of the prepared nanomaterials was conducted using transmission electron microscopy, steady-state fluorescence spectroscopy and the X-ray diffraction method. The results indicated that the synthesized ternary nanomaterials displayed excellent photoelectrochemical performance, which was much better than that of ZnO@graphene QDs and pristine ZnO quantum dots. The graphene and ZnO quantum dots formed an effective interfacial electric field, enhancing photogenerated electron-hole pairs separation and leading to a remarkable improvement in the photoelectrochemical performance of ZnO@graphene QDs. The strong surface plasmon resonance effect achieved by directly attaching Au nanoparticles to ZnO@graphene QDs led to a notable increase in the photocurrent response through electrochemical field effect amplification. Based on the specifical recognition between cysteine and Au-ZnO@graphene QDs/ITO through the specificity of Au-S bonds, a light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine with an extremely low detection limit of 8.9 nM and excellent selectivity. Hence, the Au-ZnO@graphene QDs is a promising candidate as a novel advanced photosensitive material in the field of photoelectrochemical biosensing.

12.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930837

RESUMO

In this work, a novel formaldehyde sensor was constructed based on nanoporous, flower-like, Pb-containing Pd-Au nanoparticles deposited on the cathode in a double-cabin galvanic cell (DCGC) with a Cu plate as the anode, a multiwalled carbon nanotube-modified glassy carbon electrode as the cathode, a 0.1 M HClO4 aqueous solution as the anolyte, and a 3.0 mM PdCl2 + 1.0 mM HAuCl4 + 5.0 mM Pb(ClO4)2 + 0.1 M HClO4 aqueous solution as the catholyte, respectively. Electrochemical studies reveal that the stripping of bulk Cu can induce underpotential deposition (UPD) of Pb during the galvanic replacement reaction (GRR) process, which affects the composition and morphology of Pb-containing Pd-Au nanoparticles. The electrocatalytic activity of Pb-containing nanoparticles toward formaldehyde oxidation was examined in an alkaline solution, and the experimental results showed that formaldehyde mainly caused direct oxidation on the surface of Pb-containing Pd-Au nanoparticles while inhibiting the formation of CO poison to a large degree. The proposed formaldehyde sensor exhibits a linear amperometric response to formaldehyde concentrations from 0.01 mM to 5.0 mM, with a sensitivity of 666 µA mM-1 cm-2, a limit of detection (LOD) of 0.89 µM at triple signal-to-noise, rapid response, high anti-interference ability, and good repeatability.

13.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893515

RESUMO

The adoption of green chemistry protocols in nanoparticle (NP) synthesis has exhibited substantial potential and is presently a central focus in research for generating versatile NPs applicable across a broad spectrum of applications. In this scientific contribution, we, for the first time, examined the ability of Aconitum Laeve (A. Laeve) crude extract to synthesize silver and gold nanoparticles (AgNPs@AL; AuNP@AL) and explored their potential applications in biological activities and the catalytic degradation of environmental pollutants. The synthesized NPs exhibited a distinctive surface plasmon resonance pattern, a spherical morphology with approximate sizes of 5-10 nm (TEM imaging), a crystalline architecture (XRD analysis), and potential functional groups identified by FTIR spectroscopy. The antibacterial activity was demonstrated by inhibition zones that measured 16 and 14 mm for the AgNPs@AL and AuNP@AL at a concentration of 80 µg/mL against Staphylococcus aureus and 14 and 12 mm against Escherichia coli, respectively. The antioxidant potential of the synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO), and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Our findings suggest that the AuNP@AL effectively countered the tested radicals considerably, displaying IC50 values of 115.9, 103.54, and 180.85 µg/mL against DPPH, PTIO, and ABTS, respectively. In contrast, the AgNPs@AL showed IC50 values of 144.9, 116.36, and 95.39 µg/mL against the respective radicals. In addition, both the NPs presented significant effectiveness in the photocatalytic degradation of methylene blue and rhodamine B. The overall observations indicate that A. Laeve possesses a robust capability to synthesize spherical nanoparticles, exhibiting excellent dispersion and showcasing potential applications in both biological activities and environmental remediation.


Assuntos
Aconitum , Antibacterianos , Antioxidantes , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Prata , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Aconitum/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Química Verde , Escherichia coli/efeitos dos fármacos
14.
Small ; 19(48): e2302531, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605460

RESUMO

Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.

15.
Small ; 19(23): e2207687, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908091

RESUMO

Defect engineering is an important way to tune the catalytic properties of metal-organic framework (MOF), yet precise control of defects is difficult to achieve. Herein, a cerium-based MOF (CeTCPP) is decorated with Au nanoparticles. Under ultrasound irradiation, Au nanoparticles can precisely turn 1/3 of the pristine Ce3+ nodes into Ce4+ . With the stable existence of Ce4+ , the coordination of Ce nodes changed, causing the structural irregularity in CeTCPP-Au, so that the electron-hole recombination is obviously hindered, facilitating the generation of reactive oxygen species. Therefore, under 20 min of ultrasound irradiation, the CeTCPP-Au showed superior antibacterial efficacy of over 99% against Staphylococcus aureus and Escherichia coli with good biocompatibility, which is further used for effective therapy of osteomyelitis. Overall, this work provides a dynamic defect formation strategy of MOF through the electron trapping of Au nanoparticles, which also sheds light on sonodynamic therapy in curing deep-seated lesions.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Osteomielite , Humanos , Estruturas Metalorgânicas/química , Ouro/química , Elétrons , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Osteomielite/terapia
16.
Small ; 19(23): e2207125, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899445

RESUMO

Membrane fusion is essential for the basal functionality of eukaryotic cells. In physiological conditions, fusion events are regulated by a wide range of specialized proteins, operating with finely tuned local lipid composition and ionic environment. Fusogenic proteins, assisted by membrane cholesterol and calcium ions, provide the mechanical energy necessary to achieve vesicle fusion in neuromediator release. Similar cooperative effects must be explored when considering synthetic approaches for controlled membrane fusion. We show that liposomes decorated with amphiphilic Au nanoparticles (AuLips) can act as minimal tunable fusion machinery. AuLips fusion is triggered by divalent ions, while the number of fusion events dramatically changes with, and can be finely tuned by, the liposome cholesterol content. We combine quartz-crystal-microbalance with dissipation monitoring (QCM-D), fluorescence assays, and small-angle X-ray scattering (SAXS) with molecular dynamics (MD) at coarse-grained (CG) resolution, revealing new mechanistic details on the fusogenic activity of amphiphilic Au nanoparticles (AuNPs) and demonstrating the ability of these synthetic nanomaterials to induce fusion regardless of the divalent ion used (Ca2+ or Mg2+ ). The results provide a novel contribution to developing new artificial fusogenic agents for next-generation biomedical applications that require tight control of the rate of fusion events (e.g., targeted drug delivery).


Assuntos
Lipossomos , Nanopartículas Metálicas , Ouro , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas , Colesterol , Íons
17.
Chemistry ; 29(34): e202300454, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37026579

RESUMO

Au nanoparticles (NPs) have been proven to be excellent glucose oxidase (GOx) mimics, which can catalyze the electrons transform pathway from glucose to oxygen. This study confirmed AuNPs can accelerate the reaction between [Ag(NH3 )2 ]+ and glucose under alkaline conditions, which is also known as the Tollens' reaction, and the possible mechanism was proposed. Here, [Ag(NH3 )2 ]+ instead of O2 acted directedly as an electron acceptor during glucose oxidation catalyzed by AuNPs, accompanied by hydrogen transfer. The as-synthesized Ag nanoparticles can also catalyze this process, similar to AuNPs, via a unique cascading catalysis mechanism in the Tollens' reaction. A simple and heatless glucose colorimetric assay can be established based on the plasmonic band of AgNPs with a liner range of 0.6-22.2 µM, and the limit of detection is 0.32 µM.


Assuntos
Glucose Oxidase , Nanopartículas Metálicas , Ouro , Prata , Glucose , Colorimetria , Catálise , Peróxido de Hidrogênio
18.
Chemphyschem ; 24(13): e202200842, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071288

RESUMO

Detailed mechanistic investigations of the interrelated roles of multiple key structure-directing agents in the growth solution of Au nanoparticles (AuNPs) is required for the optimization of synthetic protocols. Here, we report a robust seed-mediated growth strategy for synthesizing multibranched NPs (MB-AuNPs) with monodispersed size distribution, and investigate the roles of Ag ions and 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) based on an overgrowth synthesis approach. The intertwining roles of Ag+ , surface-capping stabilizers, and reducing agents were elucidated, and used to control the morphology of MB-AuNPs. The overgrowth of MB-AuNPs involves two distinct underlying pathways, namely, directional and anisotropic growth of Au branches on specific facets of Au seeds as well as an aggregation and growth mechanism governed by HEPES. In addition to Ag ions and HEPES, morphology tunability can also be achieved by pre-modification of the Au seeds with molecular probes. Optimized probe-containing MB-AuNPs prove to be excellent surface-enhanced Raman scattering (SERS) substrates and nanozymes. Taken together, the results of this work reveal the mechanistic evolution of nanocrystal growth which should stimulate the development of new synthetic strategies, improve the capabilities of tuning the optical, catalytic, and electronic properties of NPs, and further advance their applications in biolabeling, imaging, biosensing, and therapy.

19.
Chemphyschem ; 24(8): e202200684, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36541063

RESUMO

Detection of HOD simultaneously in the presence of a mixture of H2 O and D2 O is still an experimental challenge. Till date, there is no literature report of simultaneous detection of H2 O, D2 O and HOD based on vibrational spectra. Herein we report simultaneous quantitative detection of H2 O, D2 O and HOD in the same reaction mixture with the help of bridged polynuclear peroxo complex in absence and presence of Au nanoparticles on the basis of a peroxide vibrational mode in resonance Raman and surface enhanced resonance Raman spectrum. We synthesize bridged polynuclear peroxo complex in different solvent mixture of H2 O and D2 O. Due to the formation of different nature of hydrogen bonding between peroxide and solvent molecules (H2 O, D2 O and HOD), vibrational frequency of peroxo bond is significantly affected. Mixtures of different H2 O and D2 O concentrations produce different HOD concentrations and that lead to different intensities of peaks positioned at 897, 823 and 867 cm-1 indicating H2 O, D2 O and HOD, respectively. The lowest detection limits (LODs) were 0.028 mole fraction of D2 O in H2 O and 0.046 mole faction of H2 O in D2 O. In addition, for the first time the results revealed that the cis-peroxide forms two hydrogen bonds with solvent molecules.

20.
Nanotechnology ; 35(3)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37666245

RESUMO

SF6/N2mixture is an alternative gas of SF6, which is already used in electrical equipment. When a malfunction occurs , SF6/N2will decompose and further react with trace water and oxygen to produce nitrogen-containing gases such as NO, NO2, N2O and NF3. It is necessary to monitor these gases to ensure the safe operation of the equipment. This paper is based on density functional theory (DFT), the nanomaterial Ti3C2Txdoped with Au atom was selected as sensing material. The result shows that Au/Ti3C2Txhas larger adsorption energy when NO and NO2adsorbed on the surface, the stable structures were conformed more easily with NO and NO2compared with N2O and NF3. The density of states analysis and the frontier molecule orbital analysis reveal more change of the system before and after NO and NO2adsorption, suggesting the material showed good sensitivity performance to NO and NO2. Thus, Au/Ti3C2Txis considered to have the potential for sensing NO and NO2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa