Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Ecol ; 42(4): 286-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27130489

RESUMO

Parasitoids often use complex cues to identify suitable hosts in their environment. Phorid fly parasitoids that develop on one or a few host species often use multiple cues, ranging from general to highly specific, to home in on an appropriate host. Here, we describe the hierarchy of cues that Pseudacteon phorid flies use to identify Azteca ant hosts. We show, through behavioral observations in the field, that phorid flies are attracted to two cryptic Azteca species, but only attack Azteca sericeasur (Hymenoptera: Formicidae: Dolichoderinae). To test whether the phorid flies use cuticular hydrocarbons (CHCs) to distinguish between the two Azteca taxa, we first documented and compared cuticular hydrocarbons of the two Azteca taxa using gas chromatography/mass spectrometry. Then, using cuticular hydrocarbon-transfer experiments with live ants, we characterized the cuticular hydrocarbons of A. sericeasur as a short-range, host location cue used by P. lasciniosus (Diptera: Phoridae) to locate the ants.


Assuntos
Formigas/parasitologia , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Dípteros/fisiologia , Interações Hospedeiro-Parasita , Hidrocarbonetos/farmacologia , Animais , Formigas/metabolismo , Bioensaio
2.
Front Microbiol ; 12: 621274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597940

RESUMO

In the myrmecophytic mutualistic relationship between Azteca ants and Cecropia plants both species receive protection and exchange nutrients. The presence of microorganisms in this symbiotic system has been reported, and the symbiotic role of some fungi involved in the myrmecophytic interactions has been described. In this work we focus on bacteria within this mutualism, conducting isolations and screening for antimicrobial activities, genome sequencing, and biochemical characterization. We show that Pantoea, Rhizobium, Methylobacterium, Streptomyces and Pseudomonas are the most common cultivable genera of bacteria. Interestingly, Pseudomonas spp. isolates showed potent activity against 83% of the pathogens tested in our antimicrobial activity assays, including a phytopathogenic fungus isolated from Cecropia samples. Given the predicted nitrogen limitations associated with the fungal patches within this myrmecophyte, we performed nitrogen fixation analyses on the bacterial isolates within the Proteobacteria and show the potential for nitrogen fixation in Pseudomonas strains. The genome of one Pseudomonas strain was sequenced and analyzed. The gene cluster involved in the biosynthesis of cyclic lipodepsipeptides (CLPs) was identified, and we found mutations that may be related to the loss of function in the dual epimerization/condensation domains. The compound was isolated, and its structure was determined, corresponding to the antifungal viscosinamide. Our findings of diazotrophy and production of viscosinamide in multiple Pseudomonas isolates suggests that this bacterial genus may play an important role in the Cecropia-Azteca symbiosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa