RESUMO
Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.
Assuntos
Leucemia de Células Pilosas , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Leucemia de Células Pilosas/genética , Leucemia de Células Pilosas/metabolismo , Leucemia de Células Pilosas/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf , Fatores de Transcrição/genéticaRESUMO
Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.
Assuntos
Linfócitos B Reguladores , Camundongos , Animais , Transcriptoma , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Rim , Aloenxertos , Diferenciação Celular , Rejeição de Enxerto/etiologia , Sobrevivência de EnxertoRESUMO
The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.
Assuntos
Transplante de Órgãos , Transplante de Órgãos/efeitos adversos , Fatores de Risco , Histocompatibilidade , Teste de Histocompatibilidade , Processos Grupais , Rejeição de Enxerto/etiologia , IsoanticorposRESUMO
Antibodies against foreign human leukocyte antigen (HLA) molecules are barriers to successful organ transplantation. B cell-depleting treatments are used to reduce anti-HLA antibodies but have limited efficacy. We hypothesized that the primary source for anti-HLA antibodies is long-lived plasma cells, which are ineffectively targeted by B cell depletion. To study this, we screened for anti-HLA antibodies in a prospectively enrolled cohort of 49 patients who received chimeric antigen receptor T-cell therapy (CARTx), targeting naïve and memory B cells (CD19-targeted, n = 21) or plasma cells (BCMA-targeted, n = 28) for hematologic malignancies. Longitudinal samples were collected before and up to 1 year after CARTx. All individuals were in sustained remission. We identified 4 participants with anti-HLA antibodies before CD19-CARTx. Despite B cell depletion, anti-HLA antibodies and calculated panel reactive antibody scores were stable for 1 year after CD19-CARTx. Only 1 BCMA-CARTx recipient had pre-CARTx low-level anti-HLA antibodies, with no follow-up samples available. These data implicate CD19neg long-lived plasma cells as an important source for anti-HLA antibodies, a model supported by infrequent HLA sensitization in BCMA-CARTx subjects receiving previous plasma cell-targeted therapies. Thus, plasma cell-targeted therapies may be more effective against HLA antibodies, thereby enabling improved access to organ transplantation and rejection management.
Assuntos
Neoplasias Hematológicas , Imunoterapia Adotiva , Humanos , Antígeno de Maturação de Linfócitos B , Antígenos CD19 , Linfócitos BRESUMO
Diminishing homeostatic proliferation of memory T cells is essential for improving the efficacy of lymphoablation in transplant recipients. Our previous studies in a mouse heart transplantation model established that B lymphocytes secreting proinflammatory cytokines are critical for T cell recovery after lymphoablation. The goal of the current study was to identify mediators of B cell activation following lymphoablation in allograft recipients. Transcriptome analysis revealed that macrophage-inducible C-type lectin (Mincle, Clec4e) expression is up-regulated in B cells from heart allograft recipients treated with murine anti-thymocyte globulin (mATG). Recipient Mincle deficiency diminishes B cell production of pro-inflammatory cytokines and impairs T lymphocyte reconstitution. Mixed bone marrow chimeras lacking Mincle only in B lymphocytes have similar defects in T cell recovery. Conversely, treatment with a synthetic Mincle ligand enhances T cell reconstitution after lymphoablation in non-transplanted mice. Treatment with agonistic CD40 mAb facilitates T cell reconstitution in CD4 T cell-depleted, but not in Mincle-deficient, recipients indicating that CD40 signaling induces T cell proliferation via a Mincle-dependent pathway. These findings are the first to identify an important function of B cell Mincle as a sensor of damage-associated molecular patterns released by the graft and demonstrate its role in clinically relevant settings of organ transplantation.
Assuntos
Linfócitos B , Transplante de Coração , Aloenxertos , Animais , Linfócitos B/metabolismo , Citocinas/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Chronic active antibody-mediated rejection (caAMR) in kidney transplantation is a major cause of late graft loss and despite all efforts to date, there is no proven effective therapy. Indeed, the Transplant Society (TTS) consensus opinion called for a conservative approach optimizing baseline immunosuppression and supportive care focused on blood pressure, blood glucose, and lipid control. This review provides the rationale and early evidence in kidney transplant recipients with caAMR that supported the design of the IMAGINE study whose goal is to evaluate the potential impact of targeting the IL6/IL6R pathway.
Assuntos
Transplante de Rim , Transplantes , Humanos , Transplante de Rim/efeitos adversos , Anticorpos , Transplantados , Terapia de ImunossupressãoRESUMO
Regulatory B cells (Bregs) have shown promise as anti-rejection therapy applied to organ transplantation. However, less is known about their effect on other B cell populations that are involved in chronic graft rejection. We recently uncovered that naïve B cells, stimulated by TLR ligand agonists, converted into B cells with regulatory properties (Bregs-TLR) that prevented allograft rejection. Here, we examine the granular phenotype and regulatory properties of Breg-TLR cells suppressing B cells. Cocultures of Bregs-TLR with LPS-activated B cells showed a dose-dependent suppression of targeted B cell proliferation. Adoptive transfers of Bregs-TLR induced a decline in antibody responses to antigenically disparate skin grafts. The role of Breg BCR specificity in regulation was assessed using B cell-deficient mice replenished with transgenic BCR (OB1) and TCR (OT-II) lymphocytes of matching antigenic specificity. Results indicated that proliferation of OB1 B cells, mediated through help from CD4+ OT-II cells, was suppressed by OB1 Bregs of similar specificity. Transcriptomic analyses indicated that Bregs-TLR suppression is associated with a block in targeted B cell differentiation controlled by PRDM1 (Blimp1). This work uncovered the regulatory properties of a new brand of Breg cells and provided mechanistic insights into potential applications of Breg therapy in transplantation.
Assuntos
Linfócitos B Reguladores , Transferência Adotiva , Animais , Técnicas de Cocultura , Ativação Linfocitária , CamundongosRESUMO
The microbiota plays a major role in the regulation of the host immune functions thus establishing a symbiotic relationship that maintains immune homeostasis. Among immune cells, regulatory B cells (Bregs), which can inhibit effector T cell responses, may be involved in the intestinal homeostasis. Recent works suggest that the interaction between the microbiota and Bregs appears to be important to limit autoimmune diseases and help to maintain tolerance in transplantation. Short-chain fatty acids (SCFAs), recognized as major metabolites of the microbiota, seem to be involved in the generation of a pro-tolerogenic environment in the gut, particularly through the regulation of B cell differentiation, limiting mature B cells and promoting the function of Bregs. In this review, we show that this B cells-microbiota interaction may open a path toward new potential therapeutic applications not only for patients with autoimmune diseases but also in transplantation.
Assuntos
Linfócitos B Reguladores , Microbiota , Humanos , Tolerância Imunológica , Ativação Linfocitária , Linfócitos TRESUMO
Following solid organ transplantation, a substantial proportion of chronic allograft loss is attributed to the formation of donor-specific antibodies (DSAs) and antibody-mediated rejection (AbMR). The frequency and phenotype of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells is altered in the setting of kidney transplantation, particularly in patients who develop AbMR. However, the roles of Tfh and Tfr cells in AbMR after solid organ transplantation is unclear. We developed mouse models to inducibly and potently perturb Tfh and Tfr cells to assess the roles of these cells in the development of DSA and AbMR. We found that Tfh cells are required for both de novo DSA responses as well as augmentation of DSA following presensitization. Using orthotopic allogeneic kidney transplantation models, we found that deletion of Tfh cells at the time of transplantation resulted in less severe transplant rejection. Furthermore, using inducible Tfr cell deletion strategies we found that Tfr cells inhibit de novo DSA formation but only have a minor role in controlling kidney transplant rejection. These studies demonstrate that Tfh cells promote, whereas Tfr cells inhibit, DSA to control rejection after kidney transplantation. Therefore, targeting these cells represent a new therapeutic strategy to prevent and treat AbMR.
Assuntos
Transplante de Rim , Transplante de Órgãos , Animais , Anticorpos , Rejeição de Enxerto/etiologia , Humanos , Transplante de Rim/efeitos adversos , Camundongos , Transplante de Órgãos/efeitos adversos , Doadores de TecidosRESUMO
B cells have been implicated in transplant rejection via antibody-mediated mechanisms and more recently by presenting donor antigens to T cells. We have shown in patients with chronic antibody-mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen-presenting cells for CD4+ T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti-CD20 antibody, prior to receiving MHC class I-mismatched (Kd ) skin. The absence of B cells at the time of transplantation prolonged skin graft survival. To study the mechanisms behind this observation, T cells with indirect allospecificity were transferred in mice receiving a Kd skin transplant. T cell proliferation was markedly inhibited in the absence of recipient B cells, suggesting that B cells contribute to indirect pathway sensitization. Furthermore, we have shown that a possible way in which B cells present alloantigens is via acquisition of MHC-peptide complexes. Finally, we demonstrate that the addition of B cell depletion to the transfer of regulatory T cells (Tregs) with indirect alloresponse further prolonged skin graft survival. This study supports an important role for B cells in indirect T cell priming and further emphasizes the advantage of combination therapies in prolonging transplant survival.
Assuntos
Linfócitos B , Vesículas Extracelulares , Animais , Rejeição de Enxerto/etiologia , Humanos , Isoantígenos , Camundongos , Camundongos Endogâmicos C57BL , Transplante HomólogoRESUMO
Eighty primary renal allograft recipients, 61 living-related and 19 deceased donor, transplanted from 1963 through 1984 had continuous graft function for 30-47 years. They were treated with three different early immunosuppression programs (1963-1970: thymectomy, splenectomy, high oral prednisone; 1971-1979: divided-dose intravenous methylprednisolone; and 1980-1984: antilymphocyte globulin) each with maintenance prednisone and azathioprine, and no calcineurin inhibitor. Long-term treatment often included the anti-platelet medication, dipyridamole. Although both recipient and donor ages were young (27.2 ± 9.5 and 33.1 ± 12.0 years, respectively), six recipients with a parent donor had >40-year success. At 35 years, death-censored graft survival was 85.3% and death with a functioning graft 84.2%; overall graft survival was 69.5% (Kaplan-Meier estimate). Biopsy-documented early acute cellular and highly probable antibody-mediated rejections were reversed with divided-dose intravenous methylprednisolone. Complications are detailed in an integrated timeline. Hypogammaglobulinemia identified after 20 years doubled the infection rate. An association between a monoclonal gammopathy of undetermined significance and non-plasma-cell malignancies was identified. Twenty-seven azathioprine-treated patients tested after 37 years had extremely low levels of T1/T2 B lymphocytes representing a "low immunosuppression state of allograft acceptance (LISAA)". The lifetime achievements of these patients following a single renal allograft and low-dose maintenance immunosuppression are remarkable. Their success evolved as a clinical mosaic.
Assuntos
Transplante de Rim , Ácido Micofenólico , Adolescente , Adulto , Aloenxertos , Soro Antilinfocitário , Azatioprina/uso terapêutico , Quimioterapia Combinada , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Humanos , Imunossupressores/uso terapêutico , Prednisona , Adulto JovemRESUMO
Active antibody-mediated rejection (AMR) is a potentially devastating complication and consistently effective treatment remains elusive. We hypothesized that the reversal of acute AMR requires rapid elimination of antibody-secreting plasma cells (PC) with a proteasome inhibitor, bortezomib, followed by the sustained inhibition of PC generation with CTLA4-Ig or belatacept (B/B). We show in mice that B/B therapy selectively depleted mature PC producing donor-specific antibodies (DSA) and reduced DSA, when administered after primary and secondary DSA responses had been established. A pilot investigation was initiated to treat six consecutive patients with active AMR with B/B. Compassionate use of this regimen was initiated for the first patient who developed early, severe acute AMR that did not respond to steroids, plasmapheresis, and intravenous immunoglobulin after his third kidney transplant. B/B treatment resulted in a rapid reversal of AMR, leading us to treat five additional patients who also resolved their acute AMR episode and had sustained disappearance of circulating DSA for ≤30 months. This study provides a proof-of-principle demonstration that mouse models can identify mechanistically rational therapies for the clinic. Follow-up investigations with a more stringent clinical design are warranted to test whether B/B improves on the standard of care for the treatment of acute AMR.
Assuntos
Transplante de Rim , Abatacepte/uso terapêutico , Animais , Formação de Anticorpos , Bortezomib/uso terapêutico , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Humanos , Isoanticorpos , CamundongosRESUMO
During the past 5 decades, short-term outcomes in kidney transplant have significantly improved, in large part due to reduced rates and severity of acute rejection. Development of better immunosuppressive maintenance agents, as well as new induction therapies, helped make these advances. Nonhuman primate models provided a rigorous testing platform to evaluate candidate biologics during this process. However, antibody-mediated rejection remains a major cause of late failure of kidney allografts despite advances made in pharmacologic immunosuppression and strategies developed to facilitate improved donor-recipient matching. Our laboratory has been actively working to develop strategies to prevent and treat antibody-mediated rejection and immunologic sensitization in organ transplant, relying largely on a nonhuman primate model of kidney transplant. In this review, we will cover outcomes achieved by managing antibody-mediated rejection or sensitization in nonhuman primate models and discuss promises, limitations, and future directions for this model.
Assuntos
Transplante de Rim , Transplante de Órgãos , Animais , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , ImunossupressoresRESUMO
Lymphocyte depletion has been shown to control costimulation blockade-resistant rejection but, in some settings, to exacerbate antibody-mediated rejection (AMR). We have used alemtuzumab, which depletes T and B cells, combined with belatacept and rapamycin and previously reported control of both costimulation blockade-resistant rejection and AMR. To evaluate this regimen's effect on B cell signatures, we investigated 40 patients undergoing this therapy. B cell counts and phenotypes were interrogated using flow cytometry, and serum was analyzed for total IgG, IgM, and donor-specific alloantibody (DSA). Alemtuzumab induction produced pan-lymphocyte depletion; B cells repopulated faster and more completely than T cells. Reconstituting B cells were predominantly naïve, and memory B cells were significantly reduced (P = .001) post repopulation. Two B cell populations with potential immunomodulatory effects-regulatory (CD38hi CD24hi IgMhi CD20hi ) and transitional B cells (CD19+ CD27- IgD+ CD38hi )-were enriched posttransplant (P = .001). Total serum IgG decreased from baseline (P = .016) while IgM levels remained stable. Five patients developed DSAs within 36 months posttransplant, but none developed AMR. Baseline IgG levels in these patients were significantly higher than those in patients without DSAs. These findings suggest that belatacept and rapamycin together limit homeostatic B cell activation following B cell depletion and may lessen the risk of AMR. This regimen warrants prospective, comparative study. ClinicalTrials.gov NCT00565773.
Assuntos
Rejeição de Enxerto , Transplante de Rim , Abatacepte/uso terapêutico , Alemtuzumab , Linfócitos B , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Humanos , Estudos ProspectivosRESUMO
Through multiple mechanisms, regulatory B cells (Breg) have been shown to play an important role in the development of allograft tolerance. However, a careful understanding of the role of antigen-specificity in Breg-mediated allograft tolerance has remained elusive. In experimental models of islet and cardiac transplantation, it has been established that Bregs can be induced in vivo by anti-CD45RB ± anti-TIM1antibody treatment, resulting in prolonged, Breg-dependent allograft tolerance. The importance of Breg antigen recognition has been suggested but not confirmed through adoptive transfer experiments, using tolerant WT C57BL/6 animals challenged with either BALB/c or C3H grafts. However, the importance of receptor-specificity has not been formally tested. Here, we utilize the novel ovalbumin-specific B cell receptor transnuclear (OBI) mice in multiple primary tolerance and adoptive transfer experiments to establish that Breg-dependent allograft tolerance relies on antigen recognition by B cells. Additionally, we identify that this Breg-dependent tolerance relies on the function of transforming growth factor-ß. Together, these experiments mark important progress toward understanding how best to improve Breg-mediated allograft tolerance.
Assuntos
Linfócitos B Reguladores , Tolerância ao Transplante , Animais , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Linfócitos T ReguladoresRESUMO
Understanding the mechanisms of T cell homeostatic expansion is crucial for clinical applications of lymphoablative therapies. We previously established that T cell recovery in mouse heart allograft recipients treated with anti-thymocyte globulin (mATG) critically depends on B cells and is mediated by B cell-derived soluble factors. B cell production of interleukin (IL)-1ß and IL-6 is markedly upregulated after heart allotransplantation and lymphoablation. Neutralizing IL-1ß or IL-6 with mAb or the use of recipients lacking mature IL-1ß, IL-6, IL-1R, MyD88, or IL-6R impair CD4+ and CD8+ T cell recovery and significantly enhance the graft-prolonging efficacy of lymphoablation. Adoptive co-transfer experiments demonstrate a direct effect of IL-6 but not IL-1ß on T lymphocytes. Furthermore, B cells incapable of IL-1ß or IL-6 production have diminished capacity to mediate T cell reconstitution and initiate heart allograft rejection upon adoptive transfer into mATG treated B cell deficient recipients. These findings reveal the essential role of B cell-derived IL-1ß and IL-6 during homeostatic T cell expansion in a clinically relevant model of lymphoablation.
Assuntos
Transplante de Coração , Interleucina-6 , Animais , Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Rejeição de Enxerto/prevenção & controle , Interleucina-1beta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.
Assuntos
Transplante de Rim , Transplante de Órgãos , Linfócitos B , Rejeição de Enxerto/etiologia , Humanos , Isoanticorpos , Transplante de Órgãos/efeitos adversosRESUMO
Cardiac allograft vasculopathy (CAV) is associated with intragraft B cell infiltrates. Here, we studied the clonal composition of B cell infiltrates using 4 graft specimens with CAV. Using deep sequencing, we analyzed the immunoglobulin heavy chain variable region repertoire in both graft and blood. Results showed robust B cell clonal expansion in the graft but not in the blood for all cases. Several expanded B cell clones, characterized by their uniquely rearranged complementarity-determining region 3, were detected in different locations in the graft. Sequences from intragraft B cells also showed elevated levels of mutated rearrangements in the graft compared to blood B cells. The number of somatic mutations per rearrangement was also higher in the graft than in the blood, suggesting that B cells continued maturing in situ. Overall, our studies demonstrated B cell clonal expansion in human cardiac allografts with CAV. This local B cell response may contribute to the pathophysiology of CAV through a mechanism that needs to be identified.
Assuntos
Cardiopatias , Transplante de Coração , Aloenxertos , Linfócitos B , Rejeição de Enxerto/etiologia , Transplante de Coração/efeitos adversos , HumanosRESUMO
Antibody-mediated rejection (AMR) driven by the development of donor-specific antibodies (DSA) directed against mismatched donor human leukocyte antigen (HLA) is a major risk factor for graft loss in cardiac transplantation. Recently, the relevance of non-HLA antibodies has become more prominent as AMR can be diagnosed in the absence of circulating DSA. Here, we assessed a single-center cohort of 64 orthotopic heart transplant recipients transplanted between 1994 and 2014. Serum collected from patients with ≥ pAMR1 (n = 43) and non-AMR (n = 21) were tested for reactivity against a panel of 44 non-HLA autoantigens. The AMR group had a significantly greater percentage of patients with elevated reactivity to autoantigens compared to non-AMR (P = .002) and healthy controls (n = 94, P < .0001). DSA-positive AMR patients exhibited greater reactivity to autoantigens compared to DSA-negative (P < .0001) and AMR patients with DSA and PRA > 10% were identified as the subgroup with significantly elevated responses. Reactivity to 4 antigens, vimentin, beta-tubulin, lamin A/C, and apolipoprotein L2, was significantly different between AMR and non-AMR patients. Moreover, increased reactivity to these antigens was associated with graft failure. These results suggest that antibodies to non-HLA are associated with DSA-positive AMR although their specific role in mediating allograft injury is not yet understood.
Assuntos
Formação de Anticorpos , Transplante de Coração , Rejeição de Enxerto/etiologia , Antígenos HLA , Transplante de Coração/efeitos adversos , Humanos , Isoanticorpos , Doadores de Tecidos , VimentinaRESUMO
The antagonistic anti-CD40 antibody, 2C10, and its recombinant primate derivative, 2C10R4, are potent immunosuppressive antibodies whose utility in allo- and xenotransplantation have been demonstrated in nonhuman primate studies. In this study, we defined the 2C10 binding epitope and found only slight differences in affinity of 2C10 for CD40 derived from four primate species. Staining of truncation mutants mapped the 2C10 binding epitope to the N-terminal portion of CD40. Alanine scanning mutagenesis of the first 60 residues in the CD40 ectodomain highlighted key amino acids important for binding of 2C10 and for binding of the noncross-blocking anti-CD40 antibodies 3A8 and 5D12. All four 2C10-binding residues defined by mutagenesis clustered near the membrane-distal tip of CD40 and partially overlap the CD154 binding surface. In contrast, the overlapping 3A8 and 5D12 epitopes map to an opposing surface away from the CD154 binding domain. This biochemical characterization of 2C10 confirms the validity of nonhuman primate studies in the translation of this therapeutic antibody and provides insight its mechanism of action.