Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int Microbiol ; 27(1): 101-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37202587

RESUMO

Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.


Assuntos
Brucella melitensis , Vacinas , Brucella melitensis/genética , Brucella abortus/genética , Fatores de Virulência/genética , Polimorfismo de Nucleotídeo Único , Filogenia , Genômica
2.
BMC Vet Res ; 19(1): 211, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853407

RESUMO

Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.


Assuntos
Vacina contra Brucelose , Brucelose , Doenças dos Bovinos , Gravidez , Feminino , Humanos , Bovinos , Animais , Brucella abortus , Brucelose/veterinária , Lipopolissacarídeos , Aborto Animal , Vacinação/veterinária , Anticorpos Antibacterianos
3.
Anim Biotechnol ; 34(2): 375-383, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34487479

RESUMO

Brucellosis is a widely prevalent zoonotic disease of major public health significance. A collection of Brucella melitensis and Brucella abortus field isolates of animal and human origin were subjected to MLVA-15 typing followed by phylogeography studies. The MLVA-15 analysis of B. melitensis (n = 65) field isolates resulted in 48 different profiles. The panel I marker bruce45 was found to be most conserved, while the rest of the panel I markers showed low to moderate length polymorphism. Among the panel II markers, bruce04, bruce16 and bruce30 showed a high discriminatory index. The MLVA-15 typing of 13 B. abortus field isolates revealed 13 different genotypes with panel II markers showing higher discriminatory ability vis-à-vis panel I. The minimum spanning tree analysis (MST) in comparison with isolates from the international database revealed that all B. melitensis and B. abortus isolates from this study belonged to the 'Eastern Mediterranean' and the 'abortus C' lineage, respectively. The MLVA-15 typing could differentiate field isolates of B. abortus and B. melitensis originating from different regions, reaffirming the technique's potential of high resolution and suitability for local epidemiological studies. The MLVA scheme also has the advantage of comparison of local isolates with a worldwide database, allowing for phylogeographical studies.


Assuntos
Brucella melitensis , Humanos , Animais , Brucella melitensis/genética , Filogenia , Tipagem de Sequências Multilocus , Repetições Minissatélites , Índia
4.
Anim Biotechnol ; 33(1): 104-109, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32522080

RESUMO

Brucellosis is a highly contagious bacterial zoonotic infectious disease severely affecting the public health and economic features of endemic and non-endemic countries. The present study assessed the potentials of using the touch-down polymerase chain reaction (TD-PCR) compared to the conventional PCR and culture methods in order to detect Brucella melitensis in raw milk samples of 55 sheep and 45 goats through deriving the primers from the omp31 element of the Brucella genome. In addition, nine isolates of B. melitensis were identified using the culture method. No positive cases were found in sediment samples, while the fatty tap layer test by conventional PCR and TD-PCR revealed 6 and 16 positive samples, respectively. Based on the survey of the limits of detection by TD-PCR and conventional PCR, TD protocol had a detection threshold of three logs higher than the conventional protocol under the experimental condition. The developed protocol of this study was highly sensitive and extremely fast. Therefore, this TD-PCR protocol could detect even a very low number of bacteria in milk samples. To our best knowledge, this is the first report on the use of the TD-PCR method to identify B. melitensis in milk.


Assuntos
Brucella melitensis , Brucelose , Doenças das Cabras , Doenças dos Ovinos , Animais , Brucella melitensis/genética , Brucelose/diagnóstico , Brucelose/veterinária , Cabras , Leite , Reação em Cadeia da Polimerase , Ovinos
5.
Trop Anim Health Prod ; 54(1): 62, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037143

RESUMO

Brucellosis is a zoonotic infectious disease with a worldwide distribution. This cross-sectional study aimed to determine the occurrence of Brucella in milk and blood samples of ruminants and the importance factors associated with animal brucellosis in Eastern Iran. A total of 200 paired samples, including blood (100) and milk (100), were obtained from the goats, sheep, and cows in Eastern Iran. Serum agglutination (SAT) and 2-mercapto ethanol (2-ME) tests were performed on the sera. A multiplex-polymerase chain reaction (m-PCR) assay was performed to identify the following species of Brucella, including B. abortus biovar 1, 2, 4, 3b, 5, 6, and 9, B. abortus S19, B. melitensis, and B. melitensis Rev.1 vaccine strain. B. abortus RB51 vaccine strain was also investigated in a second PCR assay. Risk factors for infection with Brucella spp. including the effect of abortion, contact with the wild animals, herd type, age, and previous vaccination in predicting blood contamination with B. abortus biovar 1, 2, and 4 were modeled by use of the artificial neural network. A total of 23 samples were seropositive regarding SAT and 2-ME tests. In total, B. abortus was detected in 35% and 15% of blood and milk samples, respectively, by the m-PCR assay. One sample of each of milk and blood was detected to have B. melitensis. Some samples were simultaneously contaminated with two Brucella species or two biovars of B. abortus. B. abortus S19 and B. melitensis Rev.1 vaccine strains were also detected in milk and blood samples. The sensitivity and specificity of the ANN model were 81% and 62%, respectively. In conclusion, B. abortus had higher frequency than B. melitensis in blood and milk samples. ANN determined herd type, previous vaccination, and age of the animal as the largest predictors of blood contamination with B. abortus.


Assuntos
Brucella melitensis , Brucelose , Doenças dos Bovinos , Doenças das Cabras , Doenças dos Ovinos/epidemiologia , Animais , Brucella abortus/genética , Brucella melitensis/genética , Brucelose/epidemiologia , Brucelose/veterinária , Bovinos , Doenças dos Bovinos/epidemiologia , Estudos Transversais , Feminino , Doenças das Cabras/epidemiologia , Cabras , Irã (Geográfico)/epidemiologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Redes Neurais de Computação , Gravidez , Fatores de Risco , Ovinos
6.
Genomics ; 112(2): 1734-1745, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31678593

RESUMO

The Brucella melitensis chronic infection and drug resistance emerged as a severe health problem in humans and domestic cattle. The pathogens fast genome sequences availability fetched the possibility to address novel therapeutics targets in a rationale way. We acquired the core genes set from 56 B. melitensis publically available complete genome sequences. A stringent bioinformatics layout of comparative genomics and reverse vaccinology was followed to identify potential druggable proteins and multi-epitope vaccine constructs from core genes. The 23 proteins were shortlisted as novel druggable targets based on their role in pathogen-specific metabolic pathways, non-homologous to human and human gut microbiome proteins and their druggability potential. Furthermore, potential chimeric vaccine constructs were generated from lead T and B-cell overlapped epitopes in combination with immune enhancer adjuvants and linkers sequences. The molecular docking and MD simulation analyses ensured stable molecular interaction of a finally prioritized vaccine construct with human immune cells receptors.


Assuntos
Proteínas de Bactérias/química , Vacina contra Brucelose/química , Brucella melitensis/imunologia , Genoma Bacteriano , Linfócitos B/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Brucella melitensis/genética , Epitopos/química , Epitopos/imunologia , Humanos , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Ligação Proteica , Linfócitos T/imunologia
7.
BMC Microbiol ; 19(1): 108, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126230

RESUMO

BACKGROUND: Infection with Brucella melitensis (B. melitensis) is one of the most important causes of abortion in goats and sheep, and also causes severe systemic disease in exposed humans. In Ethiopia, based on seroepidemiological studies, brucellosis is known to be endemic. However, there is little information on the isolation and molecular detection of Brucella species in small ruminants. Therefore, the present study was conducted in the Amibara district of Afar Region of Ethiopia to isolate and molecularly detect Brucella infection in small ruminants. RESULTS: Out of the total 64 samples cultured, eight samples (five vaginal swabs and three milk) were positive for Brucella species based on colony morphology, growth characteristics, modified acid fast staining and biochemical tests results. Further identification using Brucella- ladder PCR method showed that four of the isolates (three from vaginal swabs and one from milk) from goats amplified fragments of 1071 bp, 794 bp, 587 bp, 450 bp and 152 bp in band size. The molecular result combined with the microbiological and biochemical characteristics of the isolates indicated that the isolates were strains of B. melitensis. CONCLUSION: The finding of this study could suggest economic and zoonotic significance of B. melitensis and warrants for the need for control strategies in livestock and creation of awareness in the pastoral communities on the safe consumption of foods of animal origin and avoidance of physical contact with aborted materials.


Assuntos
Aborto Animal/microbiologia , Brucella melitensis/isolamento & purificação , Cabras/microbiologia , Animais , Brucella melitensis/genética , Brucella melitensis/crescimento & desenvolvimento , Estudos Transversais , DNA Bacteriano/genética , Feminino , Leite/microbiologia , Reação em Cadeia da Polimerase , Gravidez , Vagina/microbiologia
8.
BMC Microbiol ; 19(1): 292, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842756

RESUMO

BACKGROUND: Human brucellosis has become a severe public health problem in China's Guangxi Province, and there has been higher prevalence of brucellosis in this region after 2010. Both multiple locus variable-number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) assay schedules were used to genotype isolates and determine relationships among isolates. RESULTS: A total of 40 isolates of Brucella were obtained from humans, pigs, and dogs from 1961 to 2016. There were at least three species of Brucella detected in Guangxi Province, Brucella melitensis, Brucella suis, and Brucella canis, with 16, 17, and 7 isolates, respectively. Of which B. suis biovar 3 was the predominant species resulting in pig brucellosis in the area examined before 2000s. Moreover, B. melitensis biovar 3 was found to be mainly responsible for human brucellosis during 2012-2016. All B. melitensis isolates in this study belonged to East Mediterranean lineage. MLVA-11 genotype 116 was the dominant genotype and represented 81.2% of the isolates. MLVA cluster analysis showed there to be 44% (7/16) brucellosis cases caused by B. melitensis with a profile of outbreak epidemic from 2012 to 2016. However, nearly 83.3% (20/24) of brucellosis cases resulting from both B. suis and B. canis showed no epidemiological links or sporadic characteristics. MLVA-16 analysis confirmed extensive genotype-sharing events between B. melitensis isolates from Guangxi and other northern provinces within China. These data revealed that there are potential epidemiology links among these strains. B. suis strains of this study showed a unique genetic lineage at the global level and may have existed historically in this area. However, present B. canis isolates were closely related to previously reported isolates in Korea, where they may have originated. MLST typing showed that the population structure of Brucella strains had changed considerably in this province; ST17 and ST21, two previously predominant populations appeared to have been replaced by recently emerging ST8 group. CONCLUSIONS: Our investigation data have inspired the hypothesis that Guangxi Province had been subject to an imported human brucellosis epidemic. Our data suggest that strains found in Northern regions of China are the principal source of infections in recent cases of human brucellosis in Guangxi Province. Comparative genomic analysis from more strains is necessary to confirm this hypothesis. This work will facilitate better understanding of the epidemiology and improve the effectiveness of control and prevention of brucellosis in this region.


Assuntos
Brucella/classificação , Brucelose/microbiologia , Variação Genética , Animais , Técnicas de Tipagem Bacteriana , Brucella/isolamento & purificação , Brucelose/epidemiologia , China/epidemiologia , DNA Bacteriano/genética , Cães , Genômica , Genótipo , Humanos , Tipagem de Sequências Multilocus , Suínos
9.
Trop Anim Health Prod ; 51(8): 2361-2370, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31177470

RESUMO

The purposes of this study were to determine phenotypic and genotypic characteristics of Brucella isolates from the Republic of Kazakhstan and to determine their biotype. The focus was laid on culture-morphological, biochemical, and biological properties of 59 Brucella isolates from primary cultures. Material was isolated from blood and tissue of serum-positive killed, dead diseased, or aborted domestic cattle from different regions of Kazakhstan where brucellosis is a common problem. Multiple-locus variable number tandem repeat analysis (MLVA) of all strains, isolated in different regions, has shown that Brucella isolates from the epizootic form two clusters. Based on the comparison with strains available in the MLVA database, B. abortus 0015/B is alike the B. abortus strains isolated from Italy and Portugal. B. melitensis 0016/B isolated from the Almaty region fits the third cluster and is alike the B. melitensis strains isolated from humans in Turkey, China, and Portugal. More than 90% of the overall B. abortus samples were isolated from the northern regions of the East and West Kazakhstan, while B. melitensis strains were registered in the southeast Kazakhstan. The most frequently recorded B. abortus biovar is biovar 3. The most frequently recorded B. melitensis biovars are biovars 1 and 3. SIGNIFICANCE AND IMPACT OF STUDY: These results contribute to a better understanding of the geographic pattern of Brucella infection in Kazakh cattle also important for developing the specific control measures. The results of current research can be used for creating a gene bank of Brucella strains circulating in Kazakhstan for producing diagnostic and therapeutic agents. The research material will be used to solve the problems of genetic characterization of Brucella species and to establish the phylogenetic relationships of strains.


Assuntos
Brucella abortus/genética , Brucella melitensis/genética , Brucelose/veterinária , Bovinos/microbiologia , Animais , Brucella abortus/isolamento & purificação , Brucella melitensis/isolamento & purificação , Brucella melitensis/ultraestrutura , Brucelose/microbiologia , Genótipo , Humanos , Cazaquistão , Repetições Minissatélites , Tipagem de Sequências Multilocus , Filogenia
10.
BMC Mol Biol ; 19(1): 10, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068312

RESUMO

BACKGROUND: Brucella melitensis bacteria cause persistent, intracellular infections in small ruminants as well as in humans, leading to significant morbidity and economic loss worldwide. The majority of experiments on the transcriptional responses of Brucella to conditions inside the host have been performed following invasion of cultured mammalian cells, and do not address gene expression patterns during long-term infection. RESULTS: Here, we examine the application of the previously developed coincidence cloning methodology to recover and characterize B. melitensis RNA from the supramammary lymph node of experimentally-infected goats. Using coincidence cloning, we successfully recovered Brucella RNA from supramammary lymph nodes of B. melitensis-infected goats at both short-term (4 weeks) and long-term (38 weeks) infection time points. Amplified nucleic acid levels were sufficient for analysis of Brucella gene expression patterns by RNA-sequencing, providing evidence of metabolic activity in both the short-term and the long-term samples. We developed a workflow for the use of sequence polymorphism analysis to confirm recovery of the inoculated strain in the recovered reads, and utilized clustering analysis to demonstrate a distinct transcriptional profile present in samples recovered in long-term infection. In this first look at B. melitensis gene expression patterns in vivo, the subset of Brucella genes that was highly upregulated in long-term as compared to short-term infection included genes linked to roles in murine infection, such as genes involved in proline utilization and signal transduction. Finally, we demonstrated the challenges of qPCR validation of samples with very low ratios of pathogen:host RNA, as is the case during in vivo brucellosis, and alternatively characterized intermediate products of the coincidence cloning reaction. CONCLUSIONS: Overall, this study provides the first example of recovery plus characterization of B. melitensis RNA from in vivo lymph node infection, and demonstrates that the coincidence cloning technique is a useful tool for characterizing in vivo transcriptional changes in Brucella species. Genes upregulated in long-term infection in this data set, including many genes not previously demonstrated to be virulence factors in mice or macrophage experiments, are candidates of future interest for potential roles in Brucella persistence in natural host systems.


Assuntos
Brucella melitensis/genética , Clonagem Molecular/métodos , Perfilação da Expressão Gênica/métodos , Linfonodos/microbiologia , RNA Bacteriano/genética , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cabras , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/métodos
11.
Microb Pathog ; 124: 250-257, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30149131

RESUMO

Brucellosis is an infectious disease that brings enormous economic burdens for developing countries. The Brucella melitensis (B. melitensis) M5-90 vaccine strain (M5-90) has been used on a large scale in China, but may cause abortions if given to pregnant goats or sheep subcutaneously during the late stages of gestation. Moreover, the vaccine M5-90 cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent M5-90 vaccine is required. In this study, a vjbR mutant of M5-90 (M5-90ΔvjbR) was constructed and overcame these drawbacks. M5-90ΔvjbR strain showed reduced survival capability in murine macrophages (RAW 264.7) and BALB/c mice and induced high protective immunity in mice. In addition, M5-90ΔvjbR induced an anti-Brucella-specific immunoglobulin G (IgG) response and stimulated the expression of gamma interferon (INF-γ) and interleukin-4 (IL-4) in vaccinated mice. Furthermore, M5-90ΔvjbR induced IgG response and stimulated the secretion of IFN-γ and IL-4 in immunized sheep. Moreover, the VjbR antigen allowed serological differentiation between infected and vaccinated animals. These results suggest that M5-90ΔvjbR is an ideal live attenuated and efficacious live vaccine candidate against B. melitensis 16 M infection.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Modelos Animais de Doenças , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/administração & dosagem , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/genética , Brucella melitensis/genética , Brucelose/imunologia , Brucelose/microbiologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Deleção de Genes , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Deleção de Sequência , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
12.
Microb Pathog ; 112: 148-155, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28916316

RESUMO

Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (strain M5-90 or others) have several drawbacks. The first is their residual virulence for animals and humans and the second is their inability to differentiate natural infection from that caused by vaccination. In the present study, Brucella melitensis M5-90 manB mutant (M5-90ΔmanB) was generated to overcome these drawbacks. M5-90ΔmanB showed significantly reduced survival in macrophages and mice, and induced strong protective immunity in BALB/c mice. It elicited anti-Brucella-specific IgG1 and IgG2a subtype responses and induced the secretion of gamma interferon (IFN-γ) and interleukin-4(IL-4). Results of immune assays showed, M5-90ΔmanB immunization induced the secretion of IFN-γ in goats, and serum samples from goats inoculated with M5-90ΔmanB were negative by Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Further, the ManB antigen also allows serological assays differentiate infections caused by wild strains from infections by vaccination. These results show that M5-90ΔmanB is a suitable attenuated vaccine candidate against virulent Brucella melitensis 16 M (16 M) infection.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Imunização , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/sangue , Proteínas de Bactérias/imunologia , Sequência de Bases , Vacina contra Brucelose/genética , Brucella melitensis/enzimologia , Brucella melitensis/genética , Brucella melitensis/crescimento & desenvolvimento , Brucelose/microbiologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-4/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Manose-6-Fosfato Isomerase/sangue , Manose-6-Fosfato Isomerase/imunologia , Camundongos Endogâmicos BALB C , Complexos Multienzimáticos/sangue , Complexos Multienzimáticos/imunologia , Nucleotidiltransferases/sangue , Nucleotidiltransferases/imunologia , Vacinação , Vacinas Atenuadas/genética
13.
BMC Public Health ; 16(1): 853, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549329

RESUMO

BACKGROUND: Brucellosis is a debilitating zoonotic disease affecting humans and animals. A comprehensive, evidence-based assessment of literature and officially available data on animal and human brucellosis for Kenya are missing. The aim of the current review is to provide frequency estimates of brucellosis in humans, animals and risk factors for human infection, and help to understand the current situation in Kenya. METHODS: A total of accessible 36 national and international publications on brucellosis from 1916 to 2016 were reviewed to estimate the frequency of brucellosis in humans and animals, and strength of associations between potential risk factors and seropositivity in humans in Kenya. RESULTS: The conducted studies revealed only few and fragmented evidence of the disease spatial and temporal distribution in an epidemiological context. Bacteriological evidence revealed the presence of Brucella (B.) abortus and B. melitensis in cattle and human patients, whilst B. suis was isolated from wild rodents only. Similar evidence for Brucella spp infection in small ruminants and other animal species is unavailable. The early and most recent serological studies revealed that animal brucellosis is widespread in all animal production systems. The animal infection pressure in these systems has remained strong due to mixing of large numbers of animals from different geographical regions, movement of livestock in search of pasture, communal sharing of grazing land, and the concentration of animals around water points. Human cases are more likely seen in groups occupationally or domestically exposed to livestock or practicing risky social-cultural activities such as consumption of raw blood and dairy products, and slaughtering of animals within the homesteads. Many brucellosis patients are misdiagnosed and probably mistreated due to lack of reliable laboratory diagnostic support resulting to adverse health outcomes of the patients and routine disease underreporting. We found no studies of disease incidence estimates or disease control efforts. CONCLUSION: The risk for re-emergence and transmission of brucellosis is evident as a result of the co-existence of animal husbandry activities and social-cultural activities that promote brucellosis transmission. Well-designed countrywide, evidence-based, and multidisciplinary studies of brucellosis at the human/livestock/wildlife interface are needed. These could help to generate reliable frequency and potential impact estimates, to identify Brucella reservoirs, and to propose control strategies of proven efficacy.


Assuntos
Brucelose/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Zoonoses/epidemiologia , Criação de Animais Domésticos , Animais , Animais Domésticos , Animais Selvagens , Brucella/imunologia , Brucella abortus , Brucella melitensis , Brucelose/microbiologia , Bovinos , Doenças Transmissíveis Emergentes/microbiologia , Humanos , Incidência , Quênia , Fatores de Risco , Zoonoses/microbiologia
14.
World J Microbiol Biotechnol ; 32(4): 58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925620

RESUMO

Brucellae are Gram-negative intracellular bacterial pathogens that infect humans and animals, bringing great economic burdens to developing countries. Live attenuated Brucella vaccines (strain M5-90 or others) are the most efficient means for prevention and control of animal brucellosis. However, these vaccines have several drawbacks, including residual virulence in animals, and difficulties in differentiating natural infection from vaccine immunization, which limit their application. A vaccine that can differentiate infection from immunization will have extensive applications. A Brucella melitensis (B. melitensis) strain M5-90 pgm mutant (M5-90Δpgm) was constructed to overcome these drawbacks. M5-90Δpgm showed significantly reduced survival in embryonic trophoblast cells and in mice, and induced high protective immunity in BALB/c mice. Moreover, M5-90Δpgm elicited an anti-Brucella-specific immunoglobulin G response and induced the secretion of gamma interferon (IFN-γ) and interleukin-2 (IL-2). In addition, M5-90Δpgm induced the secretion of IFN-γ in immunized sheep. Serum samples from sheep inoculated with M5-90Δpgm were negative by the Rose Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Furthermore, the PGM antigen allowed serological differentiation between infected and vaccinated animals. These results suggest that M5-90Δpgm is an ideal live attenuated vaccine candidate against B. melitensis 16 M and deserves further evaluation for vaccine development.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/enzimologia , Mutação , Fosfoglucomutase/genética , Trofoblastos/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacina contra Brucelose/genética , Brucella melitensis/genética , Brucella melitensis/crescimento & desenvolvimento , Brucelose/imunologia , Brucelose/prevenção & controle , Linhagem Celular , Feminino , Interferon gama/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosfoglucomutase/metabolismo , Ovinos , Trofoblastos/microbiologia , Vacinas Atenuadas/imunologia
15.
J Microbiol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037482

RESUMO

Brucellosis is an economically important zoonotic disease affecting humans, livestock, and wildlife health globally and especially in Africa. Brucella abortus and B. melitensis have been isolated from human, livestock (cattle and goat), and wildlife (sable) in South Africa (SA) but with little knowledge of the population genomic structure of this pathogen in SA. As whole genome sequencing can assist to differentiate and trace the origin of outbreaks of Brucella spp. strains, the whole genomes of retrospective isolates (n = 19) from previous studies were sequenced. Sequences were analysed using average nucleotide identity (ANI), pangenomics, and whole genome single nucleotide polymorphism (wgSNP) to trace the geographical origin of cases of brucellosis circulating in human, cattle, goats, and sable from different provinces in SA. Pangenomics analysis of B. melitensis (n = 69) and B. abortus (n = 56) was conducted with 19 strains that included B. abortus from cattle (n = 3) and B. melitensis from a human (n = 1), cattle (n = 1), goat (n = 1), Rev1 vaccine strain (n = 1), and sable (n = 12). Pangenomics analysis of B. melitensis genomes, highlighted shared genes, that include 10 hypothetical proteins and genes that encodes for acetyl-coenzyme A synthetase (acs), and acylamidase (aam) amongst the sable genomes. The wgSNP analysis confirmed the B. melitensis isolated from human was more closely related to the goat from the Western Cape Province from the same outbreak than the B. melitensis cattle sample from different cases in the Gauteng Province. The B. melitensis sable strains could be distinguished from the African lineage, constituting their own African sub-clade. The sequenced B. abortus strains clustered in the C2 lineage that is closely related to the isolates from Mozambique and Zimbabwe. This study identified genetically diverse Brucella spp. among various hosts in SA. This study expands the limited known knowledge regarding the presence of B. melitensis in livestock and humans in SA, further building a foundation for future research on the distribution of the Brucella spp. worldwide and its evolutionary background.

16.
Vet Res Commun ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230771

RESUMO

Brucellosis infects humans and animals worldwide but is particularly prevalent in Asia. In many Asian countries, molecular diagnostic tools for accurate molecular diagnostics and molecular epidemiology are lacking. Nonetheless, some countries have conducted in-depth molecular epidemiological studies. The objective of this study was to reveal the genetic relationships, geographic origins, and distributions of Brucella strains across Asia for two primary species, B. abortus and B. melitensis. For this, we systematically searched genotyping data from published studies on the molecular epidemiology of Brucella species for both humans and livestock in Asia. We used data from multilocus sequence typing (MLST), multiple-locus variable-number tandem repeat analysis (MLVA), and whole genome sequencing analysis of Brucella strains. We also analyzed the MLVA genotypes of 129 B. abortus isolates and 242 B. melitensis isolates with known origins in Asia from an online MLVA database using MLVA-11 data in minimum spanning trees and MLVA-16 data in neighbor-joining trees. We found that the B. melitensis East Mediterranean lineage is predominant across the continent, with only a small number of samples from the Africa and Americas lineages, and none from the West Mediterranean lineage. The "abortus C" genotype was the most common group of B. abortus in Asia, with limited genetic variation for this species. Several studies also reported that Near Eastern countries frequently encounter human brucellosis cases of B. abortus from genotypes 42 and 43. Our study highlights the inconsistent collection of genetic data for Brucella species across Asia and a need for more extensive sampling in most countries. Finally, a consistent nomenclature is necessary to define various groupings of strains within a lineage (i.e., clade) so uniform terminology should denote particular genetic groups that are understood by all researchers.

17.
Braz J Microbiol ; 55(1): 911-917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37999910

RESUMO

Brucellosis, caused by Brucella bacteria, is a common zoonotic infectious disease with various clinical manifestations in humans and animals. The disease is endemic in human and ruminant populations in Iran, with a particular prevalence in areas where humans have close interactions with livestock. Since domestic animals serve as the primary reservoir for brucellosis, this study aimed to identify the presence of Brucella spp. among aborted small ruminants in southeast Iran. Between 2021 and 2022, aborted fetuses of small ruminants (46 sheep and 4 goats) were collected from Zarand County in the Kerman province. Swab samples from the abomasum contents of these fetuses were obtained and subjected to DNA extraction. The samples were then tested for Brucella spp. detection using the polymerase chain reaction (PCR) method. Out of the 50 aborted fetuses examined, Brucella spp. was detected in 15 (30%) specimens, comprising 13 (28%) sheep and 2 (50%) goats. Species typing revealed the presence of Brucella ovis (6 sheep and 1 goat), Brucella melitensis (6 sheep), and Brucella abortus (1 sheep) among the positive specimens. This cross-sectional study highlights the high prevalence of various Brucella species in samples from small ruminant abortions in southeast Iran. Additionally, the identified Brucella species were not limited to their primary host livestock. These indicated potential cross-species transmission among small ruminants.


Assuntos
Brucella melitensis , Brucelose , Doenças das Cabras , Doenças dos Ovinos , Humanos , Gravidez , Feminino , Animais , Ovinos , Irã (Geográfico)/epidemiologia , Estudos Transversais , Ruminantes , Brucelose/epidemiologia , Brucelose/veterinária , Brucelose/diagnóstico , Brucella melitensis/genética , Cabras/microbiologia , Gado , Doenças dos Ovinos/microbiologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/microbiologia
18.
Vector Borne Zoonotic Dis ; 24(7): 416-423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608219

RESUMO

Background: Brucellosis is the most important public health problem worldwide, and the annual incidence of the disease in humans is 2.1 million. The Brucella genome is highly conserved, with over 90% similarity among species. The aim of this study was to perform species-level identification of Brucella spp. strains isolated from humans diagnosed with brucellosis and to further investigate the phylogenetic relationships using multiple locus variable number of tandem repeats analysis (MLVA)-16 and 16S rRNA sequencing analysis. Materials and Methods: Brucella spp. was isolated from the blood cultures of 54 patients who tested positive for brucellosis through serological examinations. Real-time PCR was used to identify the isolates in species, and the genus level of Brucella was confirmed with 16S rRNA. All isolates were subjected to phylogenetic analysis using variable number of tandem repeat analysis with multiple loci. Results: Subsequent analysis via real-time PCR confirmed these isolates to be of the Brucella melitensis species. The 16S rRNA sequence analysis showed 100% homogeneity among the isolates. MLVA revealed the formation of five different genotypic groups. While two groups were formed based on the 16S rRNA sequence analysis, five groups were formed in the MLVA. Conclusions: The study concluded that 16S rRNA sequence analysis alone did not provide sufficient discrimination for phylogenetic analysis but served as a supportive method for identification. MLVA exhibited higher phylogenetic power. The widespread isolation of B. melitensis from human brucellosis cases highlights the importance of controlling brucellosis in small ruminants to prevent human infections.


Assuntos
Brucella melitensis , Brucelose , Repetições Minissatélites , Filogenia , RNA Ribossômico 16S , Humanos , RNA Ribossômico 16S/genética , Brucelose/microbiologia , Brucelose/veterinária , Brucelose/epidemiologia , Brucella melitensis/genética , Brucella melitensis/isolamento & purificação , Brucella melitensis/classificação , Masculino , Feminino , DNA Bacteriano/genética
19.
Microorganisms ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276208

RESUMO

In livestock, brucellosis is mainly an asymptomatic disease except when abortion occurs; therefore, two serological tests are used for diagnosis as no single test is suitable. Abattoir samples enable a combination of culture, molecular, and serological tests to detect brucellosis. This study assessed Brucella-specific PCR (ITS-PCR) to detect brucellosis and to conduct a molecular characterization of Brucella spp. isolated from PCR-positive livestock (n = 565) slaughtered at abattoirs and the appropriate sample tissue(s). ITS-PCR detected Brucella DNA in 33.6% of cattle, 14.5% of sheep, and 4.7% of pig tissues. Impure Brucella cultures from PCR-positive tissues were 43.6% (44/94) of cattle, 51.7% (15/29) of sheep, and 50% (2/4) of pigs with predominantly B. abortus identification with AMOS-PCR and low isolation of mixed B. abortus and B. melitensis in all species. In cattle, 33% of isolates were from lymph nodes, while in sheep 38.0% were from the liver and kidney and only from tonsils in pigs (2/4). Brucella infections identified with AMOS-PCR were present in seropositive and mainly seronegative (75.6-100%) livestock with the potential to cause brucellosis during pregnancy or breeding. This study demonstrated the value of the polyphasic approach, especially with chronic infections and the potential risk of these asymptomatic animals.

20.
Pathogens ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37111430

RESUMO

Brucellosis in sheep and goats has a significant economic and zoonotic impact on the livestock population of Duhok province, Iraq. A total of 681 blood samples from aborted sheep and goats were collected from different flocks in seven districts of Duhok and tested using real-time polymerase chain reaction (RT-PCR). Logistic regression was used for the analysis of the potential risk factors associated with RT-PCR positivity. Results revealed an overall prevalence of 35.45% (CI = 2.57) and 23.8% 18 (CI = 0.44) in sheep and goats, respectively. A statistically significant (p = 0.004) difference in prevalence was found between the two species. RT-PCR detected more positive cases in older-aged animals (OR = 0.7164; p = 0.073). A significant difference was found in RT-PCR positivity in relation to different risk factors, including body condition, treatment taken, and abortion frequency (<0.001). The phylogenetic tree based on the 16S rRNA gene indicated that the isolates belonged to B. melitensis and shared a common ancestor and were genetically related to the United States of America (USA), Greece, China, and Nigeria. This study demonstrates that brucellosis is widely prevalent in the study regions. Therefore, the study suggests the implementation of preventive control measures for brucellosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa