Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Annu Rev Biochem ; 90: 165-191, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792375

RESUMO

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Mamíferos/genética , Homeostase do Telômero/genética , Animais , Reparo do DNA por Junção de Extremidades , Humanos , Mutação , Leveduras/genética
2.
Mol Cell ; 83(20): 3596-3607, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37716351

RESUMO

Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.


Assuntos
Reparo do DNA , Replicação do DNA , Humanos , Fase S/genética , Mitose/genética , Replicação Viral
3.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265486

RESUMO

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Assuntos
RNA Longo não Codificante , Telomerase , Homeostase do Telômero , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo , Estruturas R-Loop/genética , Reparo do DNA
4.
Mol Cell ; 81(5): 1027-1042.e4, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453166

RESUMO

Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Retroalimentação Fisiológica , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Inibidoras de STAT Ativados/genética , RNA Helicases/genética , Homeostase do Telômero , Telômero/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/antagonistas & inibidores , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Transdução de Sinais , Sumoilação , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
5.
Semin Cancer Biol ; 99: 45-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346544

RESUMO

Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.


Assuntos
Replicação do DNA , Mitose , Humanos , Fase S/genética , Ciclo Celular/genética , Replicação do DNA/genética , Mitose/genética , DNA
6.
Trends Genet ; 38(7): 752-765, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459559

RESUMO

Break-induced replication (BIR) repairs one-ended double-strand DNA breaks through invasion into a homologous template followed by DNA synthesis. Different from S-phase replication, BIR copies the template DNA in a migrating displacement loop (D-loop) and results in conservative inheritance of newly synthesized DNA. This unusual mode of DNA synthesis makes BIR a source of various genetic instabilities like those associated with cancer in humans. This review focuses on recent progress in delineating the mechanism of Rad51-dependent BIR in budding yeast. In addition, we discuss new data that describe changes in BIR efficiency and fidelity on encountering replication obstacles as well as the implications of these findings for BIR-dependent processes such as telomere maintenance and the repair of collapsed replication forks.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Plant Physiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829835

RESUMO

Establishment of final leaf size in plants relies on the precise regulation of two interconnected processes, cell division and cell expansion. The barley (Hordeum vulgare) protein BROAD LEAF1 (BLF1) limits cell proliferation and leaf growth in the width direction. However, how the levels of this potent repressor of leaf growth are controlled remains unclear. Here we used a yeast two-hybrid screen to identify the BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 ubiquitin ligase that interacts with BLF1 and confirmed the interaction of the two proteins in planta. Inhibiting the proteasome caused overaccumulation of a BLF1-eGFP fusion protein when co-expressed with BIR1, and an in vivo ubiquitination assay in bacteria confirmed that BIR1 can mediate ubiquitination of BLF1 protein. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome in BLF1-vYFP-expressing barley plants caused an accumulation of the BLF1 protein. The BIR1 protein co-localized with BLF1 in nuclei and appeared to reduce BLF1 protein levels. Analysis of bir1-1 knock-out mutants suggested the involvement of BIR1 in leaf growth control, although mainly on leaf length. Together, our results suggest that proteasomal degradation, in part mediated by BIR1, helps fine-tune BLF1 protein levels in barley.

8.
Yeast ; 41(4): 171-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38196235

RESUMO

Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.


Assuntos
Heterogeneidade Genética , Saccharomycetales , Saccharomycetales/genética , Replicação do DNA , Reparo do DNA , DNA , Instabilidade Genômica , Transcrição Gênica
9.
New Phytol ; 241(1): 430-443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920109

RESUMO

Metacaspases (MCs) are structural homologs of mammalian caspases found in plants, fungi, and protozoa. Type-I MCs carry an N-terminal prodomain, the function of which is unclear. Through genetic analysis of Arabidopsis mc2-1, a T-DNA insertion mutant of MC2, we demonstrated that the prodomain of metacaspase 2 (MC2) promotes immune signaling mediated by pattern-recognition receptors (PRRs). In mc2-1, immune responses are constitutively activated. The receptor-like kinases (RLKs) BAK1/BKK1 and SOBIR1 are required for the autoimmune phenotype of mc2-1, suggesting that immune signaling mediated by the receptor-like protein (RLP)-type PRRs is activated in mc2-1. A suppressor screen identified multiple mutations in the first exon of MC2, which suppress the autoimmunity in mc2-1. Further analysis revealed that the T-DNA insertion at the end of exon 1 of MC2 causes elevated expression of the MC2 prodomain, and overexpression of the MC2 prodomain in wild-type (WT) plants results in the activation of immune responses. The MC2 prodomain interacts with BIR1, which inhibits RLP-mediated immune signaling by interacting with BAK1, suggesting that the MC2 prodomain promotes plant defense responses by interfering with the function of BIR1. Our study uncovers an unexpected function of the prodomain of a MC in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
10.
Semin Cell Dev Biol ; 113: 88-96, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33293233

RESUMO

Overcoming cellular senescence that is induced by telomere shortening is critical in tumorigenesis. A majority of cancers achieve telomere maintenance through telomerase expression. However, a subset of cancers takes an alternate route for elongating telomeres: recombination-based alternative lengthening of telomeres (ALT). Current evidence suggests that break-induced replication (BIR), independent of RAD51, underlies ALT telomere synthesis. However, RAD51-dependent homologous recombination is required for homology search and inter-chromosomal telomere recombination in human ALT cancer cell maintenance. Accumulating evidence suggests that the breakdown of stalled replication forks, the replication stress, induces BIR at telomeres. Nevertheless, ALT research is still in its early stage and a comprehensive view is still unclear. Here, we review the current findings regarding the genesis of ALT, how this recombinant pathway is chosen, the epigenetic regulation of telomeres in ALT, and perspectives for clinical applications with the hope that this overview will generate new questions.


Assuntos
Senescência Celular/genética , Recombinação Genética/genética , Homeostase do Telômero/genética , Humanos
11.
New Phytol ; 239(6): 2335-2352, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337845

RESUMO

BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.


Assuntos
Infecções por Nematoides , Tylenchoidea , Animais , Transcriptoma/genética , Glycine max/genética , Glycine max/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Tylenchoidea/fisiologia
12.
Proc Natl Acad Sci U S A ; 117(28): 16527-16536, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601218

RESUMO

Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the FRAXA locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity. It is known that a pathway (termed MiDAS) is employed to complete the replication of CFSs in early mitosis. This process requires RAD52 and is implicated in generating translocations and copy number changes at CFSs in cancers. However, it is unclear whether RFSs also utilize MiDAS and to what extent the fragility of CFSs and RFSs arises by shared or distinct mechanisms. Here, we demonstrate that MiDAS does occur at FRAXA following folate deprivation but proceeds via a pathway that shows some mechanistic differences from that at CFSs, being dependent on RAD51, SLX1, and POLD3. A failure to complete MiDAS at FRAXA leads to severe locus instability and missegregation in mitosis. We propose that break-induced DNA replication is required for the replication of FRAXA under folate stress and define a cellular function for human SLX1. These findings provide insights into how folate deprivation drives instability in the human genome.


Assuntos
Endodesoxirribonucleases/metabolismo , Ácido Fólico/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Mitose , Rad51 Recombinase/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Endodesoxirribonucleases/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/genética , Recombinases/metabolismo
13.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446817

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) exercises its biological function by locking up and inhibiting essential caspase-3, -7 and -9 toward apoptosis execution. It is overexpressed in multiple human cancers, and it plays an important role in cancer cells' death skipping. Inhibition of XIAP-BIR3 domain and caspase-9 interaction was raised as a promising strategy to restore apoptosis in malignancy treatment. However, XIAP-BIR3 antagonists also inhibit cIAP1-2 BIR3 domains, leading to serious side effects. In this study, we worked on a theoretical model that allowed us to design and optimize selective synthetic XIAP-BIR3 antagonists. Firstly, we assessed various MM-PBSA strategies to predict the XIAP-BIR3 binding affinities of synthetic ligands. Molecular dynamics simulations using hydrogen mass repartition as an additional parametrization with and without entropic term computed by the interaction entropy approach produced the best correlations. These simulations were then exploited to generate 3D pharmacophores. Following an optimization with a training dataset, five features were enough to model XIAP-BIR3 synthetic ligands binding to two hydrogen bond donors, one hydrogen bond acceptor and two hydrophobic groups. The correlation between pharmacophoric features and computed MM-PBSA free energy revealed nine residues as crucial for synthetic ligand binding: Thr308, Glu314, Trp323, Leu307, Asp309, Trp310, Gly306, Gln319 and Lys297. Ultimately, and three of them seemed interesting to use to improve XIAP-BR3 versus cIAP-BIR3 selectivity: Lys297, Thr308 and Asp309.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Humanos , Ligantes , Ligação Proteica , Simulação de Dinâmica Molecular
14.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615638

RESUMO

Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.


Assuntos
Antineoplásicos , Neoplasias , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo
15.
BMC Bioinformatics ; 23(1): 555, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544090

RESUMO

MOTIVATION: In eukaryotes, homologous recombination between the parental genomes frequently occurs during the evolutionary conserved process of meiosis, generating the genetic diversity transmitted by the gametes. The genome-wide determination of the frequency and location of the recombination events can now be efficiently performed by genotyping the offspring's polymorphic markers. However, genotyping recombination in complex hybrid genomes with existing methods remains challenging because of their strain and ploidy specificity and the degree of diversity and complexity of the parental genomes, especially in [Formula: see text] polyploids. RESULTS: We present UGDR, a pipeline to genotype the polymorphisms of complex hybrid yeast genomes. It is based on optimal mapping strategies of NGS reads, comparative analyses of the allelic ratio variation and read depth coverage. We tested the UGDR pipeline with sequencing reads from recombined hybrid diploid yeast strains and various clinical strains exhibiting different degrees of ploidy. UGDR allows to plot the markers distribution and recombination profile per chromosome. CONCLUSION: UGDR detects and plots recombination events in haploids and polyploid yeasts, which facilitates the discovery and understanding of the yeast genetic recombination map and identify new out-performing recombinants.


Assuntos
Genoma , Poliploidia , Ploidias , Diploide , Polimorfismo Genético , Leveduras
16.
Mol Microbiol ; 116(1): 260-276, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713372

RESUMO

Candida glabrata is an opportunistic pathogen of humans, responsible for up to 30% of disseminated candidiasis. Adherence of C. glabrata to host cells is mediated by adhesin-like proteins (ALPs), about half of which are encoded in the subtelomeres. We performed a de novo assembly of two C. glabrata strains, BG2 and BG3993, using long single-molecule real-time (SMRT) reads, and constructed high-quality telomere-to-telomere assemblies of all 13 chromosomes to assess differences between C. glabrata strains. We documented variation between strains, and in agreement with earlier studies, found high (~0.5%-1%) frequencies of SNVs across the genome, including within subtelomeric regions. We documented changes in ALP gene structure and complement: there are large length differences in ALP genes in different strains, resulting from copy number variation in tandem repeats. We compared strains to characterize chromosome rearrangement events including within the poorly characterized subtelomeric regions. We show that rearrangements within the subtelomere regions all affect ALP-encoding genes, and 14/16 involve just the most terminal ALP gene. We present evidence that these rearrangements are mediated by break-induced replication. This study highlights the constrained nature of subtelomeric changes impacting ALP gene complement and subtelomere structure.


Assuntos
Candida glabrata/genética , Moléculas de Adesão Celular/genética , Telômero/genética , Candidíase/microbiologia , Adesão Celular/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética
17.
EMBO Rep ; 21(7): e49367, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32419301

RESUMO

Impediments to DNA replication threaten genome stability. The homologous recombination (HR) pathway has been involved in the restart of blocked replication forks. Here, we used a method to increase yeast cell permeability in order to study at the molecular level the fate of replication forks blocked by DNA topoisomerase I poisoning by camptothecin (CPT). Our results indicate that Rad52 and Rad51 HR factors are required to complete DNA replication in response to CPT. Recombination events occurring during S phase do not generally lead to the restart of DNA synthesis but rather protect blocked forks until they merge with convergent forks. This fusion generates structures requiring their resolution by the Mus81 endonuclease in G2 /M. At the global genome level, the multiplicity of replication origins in eukaryotic genomes and the fork protection mechanism provided by HR appear therefore to be essential to complete DNA replication in response to fork blockage.


Assuntos
Replicação do DNA , Recombinação Homóloga , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Instabilidade Genômica , Recombinação Homóloga/genética , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S/genética
18.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806456

RESUMO

Receptor-like kinases (RLKs) are a large group of pattern recognition receptors (PRRs) and play a critical role in recognizing pathogens, transducing defense signals, and mediating the activation of immune defense responses. Although extensively studied in the model plant Arabidopsis, studies of RLKs in crops, including soybean, are limited. When a BAK1-interacting receptor-like kinase (BIR1) homolog (referred to as GmBIR1 hereafter) was silenced by the BPMV (Bean pod mottle virus)-induced gene silencing (BPMV-VIGS), it resulted in phenotypes that were reminiscent of constitutively activated defense responses, including a significantly stunted stature with observable cell death on the leaves of the silenced plants. In addition, both SA and H2O2 were over-accumulated in the leaves of the GmBIR1-silenced plants. Consistent with this autoimmune phenotype, GmBIR1-silenced plants exhibited significantly enhanced resistance to both Pseudomonas syringae pv. glycinea (Psg) and Soybean mosaic virus (SMV), two different types of pathogens, compared to the vector control plants. Together, our results indicated that GmBIR1 is a negative regulator of immunity in soybean and the function of BIR1 homologs is conserved in different plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas , Pseudomonas syringae/fisiologia , Glycine max/fisiologia
19.
Trends Genet ; 34(7): 518-531, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735283

RESUMO

Break-induced replication (BIR) is a pathway that repairs one-ended double-strand breaks (DSBs). For decades, yeast model systems offered the only opportunities to study eukaryotic BIR. These studies described an unusual mode of BIR synthesis that is carried out by a migrating bubble and shows conservative inheritance of newly synthesized DNA, leading to genomic instabilities like those associated with cancer in humans. Yet, evidence of BIR functioning in mammals or during repair of other DNA breaks has been missing. Recent studies have uncovered multiple examples of BIR working in replication restart and repair of eroded telomeres in yeast and mammals, as well as some unexpected findings, including the RAD51 independence of BIR. Strong interest remains in determining the variations in molecular mechanisms that drive and regulate BIR in different genetic backgrounds, across organisms, and particularly in the context of human disease.


Assuntos
Reparo do DNA/genética , Replicação do DNA/genética , Animais , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/genética , Humanos , Recombinação Genética/genética , Telômero/genética
20.
J Exp Bot ; 72(8): 3219-3234, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475728

RESUMO

Successful plant defence against microbial pathogens is based on early recognition and fast activation of inducible responses. Key mechanisms include detection of microbe-associated molecular patterns by membrane-localized pattern recognition receptors that induce a basal resistance response. A well-described model of such responses to pathogens involves the interactions between Solanaceae plants and proteinaceous elicitors secreted by oomycetes, called elicitins. It has been hypothesized that the formation of oligomeric structures by elicitins could be involved in their recognition and activation of defensive transduction cascades. In this study, we tested this hypothesis using several approaches, and we observed differences in tobacco plant responses induced by the elicitin ß-cryptogein (ß-CRY) and its homodimer, ß-CRYDIM. We also found that the C-terminal domain of elicitins of other ELI (true-elicitin) clades plays a significant role in stabilization of their oligomeric structure and restraint in the cell wall. In addition, covalently cross-linking ß-CRYDIM impaired the formation of signalling complexes, thereby reducing its capacity to elicit the hypersensitive response and resistance in the host plant, with no significant changes in pathogenesis-related protein expression. By revealing the details of the effects of ß-CRY dimerization on recognition and defence responses in tobacco, our results shed light on the poorly understood role of elicitins' oligomeric structures in the interactions between oomycetes and plants.


Assuntos
Nicotiana , Oomicetos/patogenicidade , Doenças das Plantas , Sequência de Aminoácidos , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa