Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Electrophoresis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687192

RESUMO

Residual substances that are considered hazardous to the recipient must be removed from final cellular therapeutic products manufactured for clinical purposes. In doing so, quality rules determined by competent authorities (CAs) for the clinical use of tissue- and cell-based products can be met. In our study, we carried out residual substance analyses, and purity determination studies of trypsin and trypsin inhibitor in clinically manufactured bone marrow-derived mesenchymal stromal/stem cell products, using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. Despite being a semiquantitative method, SDS-PAGE has several benefits over other methods for protein analysis, such as simplicity, convenience of use, and affordability. Due to its convenience and adaptability, SDS-PAGE is still a commonly used method in many laboratories, despite its limits in dynamic range and quantitative precision. Our goal in this work was to show that SDS-PAGE may be used effectively for protein measurement, especially where practicality and affordability are the major factors. The results of our study suggest a validated method to guide tissue and cell manufacturing sites for making use of an agreeable, accessible, and cost-effective method for residual substance analyses in clinically manufactured cellular therapies.

2.
Cancer Cell Int ; 24(1): 116, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539153

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) have been acknowledged as the most important stromal cells in the bone marrow (BM) microenvironment for physiologic hematopoiesis and the concomitant hematologic malignancies. However, the systematic and detailed dissection of the biological and transcriptomic signatures of BM-MSCs in multiple myeloma (MM) are largely unknown. METHODS: In this study, we isolated and identified BM-MSCs from 10 primary MM patients and 10 healthy donors (HD). On the one hand, we compared the multifaceted biological characteristics of the indicated two BM-MSCs, including biomarker expression pattern, multilineage differentiation potential, stemness and karyotyping, together with the cellular vitality and immunosuppressive property. On the other hand, we took advantage of RNA-SEQ and bioinformatics analysis to verify the similarities and differences at the transcriptomic level between MM-MSCs and HD-MSCs. RESULTS: As to biological phenotypes and biofunctions, MM-MSCs revealed conservation in immunophenotype, stemness and differentiation towards adipocytes and chondrocytes with HD-MSCs, whereas with impaired osteogenic differentiation potential, cellular vitality and immunosuppressive property. As to transcriptomic properties, MM-MSCs revealed multidimensional alterations in gene expression profiling and genetic variations. CONCLUSIONS: Overall, our date systematic and detailed reflected the multifaceted similarities and variations between MM-MSCs and HD-MSCs both at the cellular and molecular levels, and in particular, the alterations of immunomodulation and cellular viability of MM-MSCs, which wound benefit the further exploration of the pathogenesis and new drug application (NDA) of multiple myeloma from the view of BM-MSCs.

3.
Reprod Biol Endocrinol ; 22(1): 74, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918809

RESUMO

BACKGROUND: Erectile dysfunction (ED) is a common male sexual dysfunction, with an increasing incidence, and the current treatment is often ineffective. METHODS: Vascular endothelial growth factor (VEGFA) was used to treat bone marrow-derived mesenchymal stem cells (BM-MSCs), and their cell migration rates were determined by Transwell assays. The expression of the von Willebrand Factor (vWF)VE-cadherin, and endothelial nitric oxide synthase(eNOS) endothelial markers was determined by qRT‒PCR and Western blot analyses. The MALAT1-induced differentiation of BM-MCs to ECs via the CDC42/PAK1/paxillin pathway was explored by transfecting VEGFA-induced BM-MSC with si-MALAT1 and overexpressing CDC42 and PAK1. The binding capacity between CDC42, PAK1, and paxillin in VEGFA-treated and non-VEGFA-treated BM-MSCs was examined by protein immunoprecipitation. MiR-206 was overexpressed in VEGFA-induced BM-MSC, and the binding sites of MALAT1, miR-206, and CDC42 were identified using a luciferase assay. Sixty male Sprague‒Dawley rats were divided into six groups (n = 10/group). DMED modelling was demonstrated by APO experiments and was assessed by measuring blood glucose levels. Erectile function was assessed by measuring the intracavernosa pressure (ICP) and mean arterial pressure (MAP). Penile erectile tissue was analysed by qRT‒PCR, Western blot analysis, and immunohistochemical staining. RESULTS: MALAT1 under VEGFA treatment conditions regulates the differentiation of BM-MSCs into ECs by modulating the CDC42/PAK1/paxillin axis. In vitro experiments demonstrated that interference with CDC42 and MALAT1 expression inhibited the differentiation of BM-MSCs to ECs. CDC42 binds to PAK1, and PAK1 binds to paxillin. In addition, CDC42 in the VEGFA group had a greater ability to bind to PAK1, whereas PAK1 in the VEGFA group had a greater ability to bind to paxillin. Overexpression of miR-206 in VEGFA-induced BM-MSCs demonstrated that MALAT1 competes with the CDC42 3'-UTR for binding to miR-206, which in turn is involved in the differentiation of BM-MSCs to ECs. Compared to the DMED model group, the ICP/MAP ratio was significantly greater in the three BM-MSCs treatment groups. CONCLUSIONS: MALAT1 facilitates BM-MSC differentiation into ECs by regulating the miR-206/CDC42/PAK1/paxillin axis to improve ED. The present findings revealed the vital role of MALAT1 in the repair of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSC-mediated repair of DMED.


Assuntos
Diferenciação Celular , Disfunção Erétil , Células-Tronco Mesenquimais , MicroRNAs , Paxilina , RNA Longo não Codificante , Ratos Sprague-Dawley , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Quinases Ativadas por p21 , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Ratos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Células-Tronco Mesenquimais/metabolismo , Disfunção Erétil/terapia , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Paxilina/metabolismo , Paxilina/genética , Células Endoteliais/metabolismo , Células Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
4.
Biochem Genet ; 62(1): 176-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37306827

RESUMO

Bone defects have remained a clinical problem in current orthopedics. Bone marrow mesenchymal stem cells (BM-MSCs) with multi-directional differentiation ability have become a research hotspot for repairing bone defects. In vitro and in vivo models were constructed, respectively. Alkaline phosphatase (ALP) staining and alizarin red staining were performed to detect osteogenic differentiation ability. Western blotting (WB) was used to detect the expression of osteogenic differentiation-related proteins. Serum inflammatory cytokine levels were detected by ELISA. Fracture recovery was evaluated by HE staining. The binding relationship between FOXC1 and Dnmt3b was verified by dual-luciferase reporter assay. The relationship between Dnmt3b and CXCL12 was explored by MSP and ChIP assays. FOXC1 overexpression promoted calcium nodule formation, upregulated osteogenic differentiation-related protein expression, promoted osteogenic differentiation, and decreased inflammatory factor levels in BM-MSCs, and promoted callus formation, upregulated osteogenic differentiation-related protein expression, and downregulated CXCL12 expression in the mouse model. Furthermore, FOXC1 targeted Dnmt3b, with Dnmt3b knockdown decreasing calcium nodule formation and downregulating osteogenic differentiation-related protein expression. Additionally, inhibiting Dnmt3b expression upregulated CXCL12 protein expression and inhibited CXCL12 methylation. Dnmt3b could be binded to CXCL12. CXCL12 overexpression attenuated the effects of FOXC1 overexpression and inhibited BM-MSCs osteogenic differentiation. This study confirmed that the FOXC1-mediated regulation of the Dnmt3b/CXCL12 axis had positive effects on the osteogenic differentiation of BM-MSCs.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Osteogênese , Cálcio/metabolismo , Cálcio/farmacologia , Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , MicroRNAs/metabolismo
5.
Ren Fail ; 46(2): 2319330, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39049729

RESUMO

AIM: This study explores the possible therapeutic role of rats and mice bone marrow-derived mesenchymal stem cells (BM-MSCs) on renal damage and toxicity brought on by carbon tetrachloride (CCl4) in Wistar rats. METHODS: Following an intraperitoneal injection of CCl4 (0.5 mL/kg b.w. twice weekly) for eight weeks, male Wistar rats were intravenously treated with rats and mice BM-MSCs (1 × 106 cells in 0.2 mL Dulbecco's Modified Eagle Medium (DMEM)/rat/week) a week for four weeks. Kidney functions were evaluated and kidney samples were examined using hematoxylin and eosin (H&E), Masson's trichrome (MT) staining techniques, and electron microscopy analysis. Kidney cyclooxygenase-2 (COX-2), protein 53 (p53), and tumor necrosis factor-α (TNF-α) were detected by immunohistochemical staining techniques. Additionally, bioindicators of oxidative stress and antioxidant defense systems were identified in kidney tissue. RESULTS: In CCl4-injected rats, serum creatinine, urea, and uric acid levels significantly increased, as did renal lipid peroxidation (LPO), while superoxide dismutase, glutathione peroxidase (GPx), glutathione (GSH) transferase, and GSH levels significantly dropped in the kidneys. Histologically, the kidneys displayed a wide range of structural abnormalities, such as glomerular shrinkage, tubular dilations, inflammatory leukocytic infiltration, fibroblast proliferation, and elevated collagen content. Inflammatory cytokines like COX-2 and TNF-α as well as the pro-apoptotic mediator p53 were considerably upregulated. Treatment of BM-MSCs from mice and rats with CCl4-injected rats considerably reduced the previously noted abnormalities. CONCLUSIONS: By boosting antioxidant defense and reducing apoptosis and inflammation, BM-MSCs from mice and rats were able to enhance kidney function and histological integrity in rats that had received CCl4 injections.


Assuntos
Tetracloreto de Carbono , Fibrose , Rim , Células-Tronco Mesenquimais , Animais , Masculino , Camundongos , Ratos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/induzido quimicamente , Tetracloreto de Carbono/toxicidade , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Rim/patologia , Peroxidação de Lipídeos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
6.
Cell Biochem Funct ; 41(8): 1200-1208, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695119

RESUMO

The goal of this study was to assess the influence of bone marrow-derived mesenchymal stem cells (BM-MSCs) on the nephrotoxicity induced by fractionated doses of gamma irradiation (Rad) and the cotherapy of levetiracetam and oxcarbazepine in male rats. Adult rats were randomly divided into four groups. Group I: Control, Group II: antiepileptic drugs (AEDs), Group III: AEDs +Rad and Group IV: AEDs + Rad + MSCs. Rats treated with AEDs and exposed to fractionated doses of γ-irradiation displayed a discernible increase in serum urea, creatinine, kidney injury marker, kidney malondialdehyde, transforming growth factor beta (TGF-ß) and the relative expression of Smad3 along with a decrease in the relative expression of Smad7 and glutathione level. Alternatively, groups treated with BM-MSCs with AEDs and Rad showed a substantial modification in the majority of the evaluated parameters and looked to be successful in reducing the hazards of the combination therapy of AEDs and radiation. The reno-histopathological study supports the biochemical analysis. In conclusion, BM-MSCs exhibited therapeutic potential against nephrotoxicity induced by fractionated doses of γ-irradiation and AEDs. The outcome was brought about by the downregulation of the TGF-ß/Smad pathway. BM-MSCs might be suggested as a valuable therapeutic strategy to overcome kidney injury induced by gamma irradiation during AEDs cotherapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Masculino , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/metabolismo , Rim/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo
7.
Cell Biochem Funct ; 41(8): 1412-1421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877623

RESUMO

The treatment of type 1 diabetes through islet cell transplantation is a complex process, facing challenges such as allograft rejections and a limited supply of donors. One potential solution is to utilize the liver as an alternative for natural insulin production, as hepatocytes can secrete proteins and respond to glucose levels. Recent research has shown promising results in using mesenchymal stem cells as a potential cure for diabetes. The study utilized a diabetic rat model, confirmed through blood sugar measurement. A plasmid vector was designed with specific genetic components, synthesized by biotech company, and then Inserted vector into a plasmid with resistance genes and bacterial origin. Bone marrow-derived mesenchymal stem cells (BM-MSCs) were cultured and transfected with the plasmid using Lipofectamine 3000. Polymerase chain reaction was employed to confirm successful transfection using specific primers. For the animal study, 30 male Wistar rats were divided into six groups, each comprising five rats. The control group did not receive any treatment, while the second group received MSCs via Portal Vein Injection. The third group received MSCs transfected with a specific construct via Portal Vein Injection. The fourth group was induced to develop diabetes through streptozotocin (STZ) injection, the fifth group developed diabetes and received untransfected MSCs via Portal Vein Injection, and the sixth group received MSCs transfected with the specific construct via Portal Vein Injection. To manage Pain, appropriate pain control was administered to the rats for 3 days after the surgery. Fixed liver tissues obtained from the euthanized rats were utilized for immunohistochemistry. In this study, immunohistochemical techniques were used to examine insulin expression in different groups of rats. The control groups showed high levels of insulin expression, while the diabetic groups exhibited lower expression. However, there was a significant difference between the diabetic groups treated with MSC and transgenic MSC cells. All groups had similar baseline glucose levels, but the diabetic groups showed a significant increase after STZ injection, whereas the control and MSC groups did not. Postintervention, both the control and MSC groups had similar glucose levels to the post-STZ levels. However, diabetes-induced groups experienced a significant decrease in glucose levels, with the transfected MSCs showing a greater decrease than the untransfected MSCs. The study suggested that treatment with MSCs, especially transfected ones, can effectively reduce glucose levels in rats with diabetes. In this research, rat BM-MSCs were utilized to create insulin-producing mesenchymal cells with glucose-sensitive insulin expression. The cells were transferred to the liver of diabetic rats via portal vein injection, leading to an increase in insulin expression. This study proposes a novel approach for cell therapy and delivery in the treatment of type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Masculino , Animais , Insulina/metabolismo , Glucose/metabolismo , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Veia Porta/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Expressão Ectópica do Gene , Diferenciação Celular , Glicemia , Células-Tronco Mesenquimais/metabolismo , Dor/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
8.
J Integr Neurosci ; 22(2): 40, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992584

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease for which bone marrow mesenchymal stem cells (BM-MSCs) have become one of the most promising tools for treatment. Cuprizone(CPZ) induces demyelination in the central nervous system and its use has established a demyelination sheath animal model which is particularly suitable for studying the effects of BM-MSCs on the remyelination and mood improvement of a demyelinating model mice. METHODS: 70 C57BL/6 male mice were selected and divided into 4 groups: the normal control (n = 20), chronic demyelination (n = 20), myelin repair (n = 15) and cell-treated groups (n = 15). Mice in the normal control group were given a normal diet; the chronic demyelination group mice were given a 0.2% CPZ mixed diet for 14 weeks, mice in the myelin repair and cell-treated groups mice were given a 0.2% CPZ diet for 12 weeks and normal diet for 2 weeks, while the cell-treated group mice were injected with BM-MSCs from the 13th week. The cuprizone-induced demyelination model was successfully established and BM-MSCs extracted, behavioural changes of the mice were detected by open field test, elevated plus maze test and tail suspension test, demyelination and repair of the corpus callosum and astrocyte changes were observed by immunofluorescence and electron microscopy and the concentrations of monoamine neurotransmitters and their metabolites detected by enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemistry (HPLC-ECD). RESULTS: Results suggest BM-MSCs were successfully extracted and cultured, and migrated to the demyelinating area of brain tissue after cell transplantation. Compared with the normal control group, the mice in the chronic demyelination group showed obvious anxiety and depression behaviours (p < 0.05); compared with the chronic demyelination group, the anxiety and depression behaviours of the cell-treated group mice were improved (p < 0.05); compared with the normal control group, the demyelination of the corpus callosum region of the chronic demyelination group mice was significant (p < 0.01), while the myelin sheath of the cell-treated and myelin repair groups was repaired when compared with the chronic demyelination group (p < 0.05), and the cell-treated group had a more significant effect than the myelin repair group (p < 0.05). Compared with the normal control group, the number of astrocytes in the corpus callosum of the chronic demyelination group mice was significantly increased (p < 0.01), and the expression of glial fibrillary acidic protein (GFAP) in the cell-treated group was lower than that in the chronic demyelination and myelin repair groups (p < 0.05); the serum concentrations of norepinephrine (NE), 5-hydroxytryptamine (5-HT) and 5-Hydroxyindole-3-acetic acid (5-HIAA) between the normal control and the chronic demyelination groups were significantly different (p < 0.05). CONCLUSIONS: The CPZ-induced model can be used as an experimental carrier for MS combined with anxiety and depression, and BM-MSC transplantation promotes the repair of myelin sheath and the recovery of emotional disorders in the model.


Assuntos
Doenças Desmielinizantes , Células-Tronco Mesenquimais , Esclerose Múltipla , Masculino , Animais , Camundongos , Bainha de Mielina/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
9.
Cell Tissue Res ; 388(1): 105-116, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091805

RESUMO

Mesenchymal stem cells (MSCs) are considered a promising treatment for ischemic diseases, but their use is limited due to poor survival after injection. Hypoxia can significantly enhance the survival of MSCs. This study aimed to investigate hypoxia pretreatment of bone marrow mesenchymal stem cells (BM-MSCs) in hindlimb ischemia (HI) and the underlying mechanism. The HI mouse model was established and human BM-MSCs were injected into ischemic skeletal muscles. The blood flow reperfusion and capillary density were measured. In vitro, human BM-MSC cells were treated with hypoxia. The expression of NRG-1 and associated angiogenic factors were measured after knockdown or overexpression of NRG-1. The conditioned medium (CdM) of BM-MSCs was prepared and co-cultured with human umbilical vein endothelial cells (HUVECs), and then, the proliferation, migration, and angiogenesis of HUVECs were detected. After hypoxia pretreatment, NRG-1 expression, clone formation, proliferation, and angiogenic factor secretion from BM-MSCs were increased, while knockdown of NRG-1 reversed these results. In normoxia condition, overexpression of NRG-1 enhanced above factors. Additionally, hypoxia pretreatment of BM-MSCs induced the proliferation and migration of HUVECs and angiogenesis. Moreover, the injection of hypoxia pretreatment of BM-MSCs improved blood reperfusion and capillary density in HI mice, while knockdown of NRG-1 reversed the effect. Furthermore, the PI3K inhibitor and activator reversed the effect of NRG-1 overexpression and knockdown on angiogenesis. We concludes that hypoxia pretreatment of BM-MSCs facilitates angiogenesis and alleviates HI injury via NRG-1/PI3K/AKT pathway.


Assuntos
Hipóxia Celular , Isquemia , Transplante de Células-Tronco Mesenquimais , Neuregulina-1 , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Camundongos , Neovascularização Fisiológica , Neuregulina-1/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima
10.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563306

RESUMO

The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Análise Espectral Raman
11.
J Cell Mol Med ; 25(11): 5138-5149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939261

RESUMO

Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.


Assuntos
Adipogenia , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais/citologia , Osteogênese , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Receptor 4 Toll-Like/genética
12.
Mol Cell Biochem ; 476(6): 2503-2512, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33629241

RESUMO

The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/genética
13.
Cell Biol Int ; 45(12): 2429-2442, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34374467

RESUMO

Compelling evidences suggest that transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can be therapeutically effective for central nervous system (CNS) injuries and neurodegenerative diseases. The therapeutic effect of BM-MSCs mainly attributes to their differentiation into neuron-like cells which replace injured and degenerative neurons. Importantly, the neurotrophic factors released from BM-MSCs can also rescue injured and degenerative neurons, which plays a biologically pivotal role in enhancing neuroregeneration and neurological functional recovery. Tetramethylpyrazine (TMP), the main bioactive ingredient extracted from the traditional Chinese medicinal herb Chuanxiong, has been reported to promote the neuronal differentiation of BM-MSCs. This study aimed to investigate whether TMP regulates the release of neurotrophic factors from BM-MSCs. We examined the effect of TMP on brain-derived neurotrophic factor (BDNF) released from BM-MSCs and elucidated the underlying molecular mechanism. Our results demonstrated that TMP at concentrations of lower than 200 µM increased the release of BDNF in a dose-dependent manner. Furthermore, the effect of TMP on increasing the release of BDNF from BM-MSCs was blocked by inhibiting the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/cAMP-response element binding protein (CREB) pathway. Therefore, we concluded that TMP could induce the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway, leading to the formation of neuroprotective and proneurogenic microenvironment. These findings suggest that TMP possesses novel therapeutic potential to promote neuroprotection and neurogenesis through improving the neurotrophic ability of BM-MSCs, which provides a promising nutritional prevention and treatment strategy for CNS injuries and neurodegenerative diseases via the transplantation of TMP-treated BM-MSCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
14.
J Med Virol ; 92(12): 3465-3474, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32056224

RESUMO

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and associated cirrhosis, and hepatocellular carcinoma worldwide. At present, there is no prophylactic vaccine against HCV due to the lack of in vivo and in vitro model systems. Although most recombinants of all major HCV genotypes replicate in Huh-7 cell line and derivatives, these cells are human hepatoma-derived cell line. Therefore, the development of un-tumor-derived cell systems facilitating the entire HCV life cycle is urgently needed. In this study, we aimed to establish a novel tree shrew-derived bone marrow-derived mesenchymal stem cell (BM-MSC) system to reconstruct the HCV life cycle. We transduction cluster of differentiation 81 (CD81), occludin (OCLN), and microRNA-122 (miR-122) into BM-MSCs, then used a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, to infect the cells. We observed that BM-MSCs transduction with CD81/OCLN or CD81/OCLN/miR-122 support HCV RNA replication and infectious virus production. We also found that the addition of exogenous vascular endothelial growth factor (VEGF) can enhance HCV infectivity in BM-MSCs, with HCV virus load up to 105 copies/mL. In conclusion, we identified the minimum essential factors required for HCV replication in tree shrew-derived nonhuman nonhepatic BM-MSCs. Further, we identified that exogenous addition of VEGF, and exogenous expression of CD81, OCLN, and miR-122, facilitates efficient viral replication and production of infectious particles. Our results describe a novel cell system capable of supporting the entire HCV life cycle, which may provide an essential tool for anti-HCV drug discovery, vaccine development, and study of pathogenesis.

15.
Cell Commun Signal ; 18(1): 26, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059739

RESUMO

BACKGROUND: The limited options to treat obesity and its complications result from an incomplete understanding of the underlying molecular mechanisms regulating white adipose tissue development, including adipocyte hypertrophy (increase in size) and hyperplasia (increase in number through adipogenesis). We recently demonstrated that lack of the adaptor protein Nck1 in mice is associated with reduced adiposity and impaired adipocyte differentiation. In agreement, Nck1 depletion in 3 T3-L1 cells also attenuates adipocyte differentiation by enhancing PDGFRα activation and signaling. This is accompanied by higher expression of PDGF-A, a specific PDGFRα ligand, that may contribute to enhanced activation of PDGFRα signaling in the absence of Nck1 in white adipose tissue. However, whether Nck1 deficiency also impairs adipogenic differentiation in bone marrow still remains to be determined. METHODS: To address this point, Nck1-deficient derived bone marrow mesenchymal stem/stromal cells (BM-MSCs) and C3H10T1/2 mesenchymal stem cells were differentiated into adipocytes in vitro. Genes and proteins expression in these cellular models were determined using qPCR and western blotting respectively. Pharmacological approaches were used to assess a role for Nrf2 in mediating Nck1 deficiency effect on mesenchymal stem cells adipocyte differentiation. RESULTS: Nck1 deficiency in both BM-MSCs and C3H10T1/2 results in impaired adipocyte differentiation, accompanied by increased activation of the transcription factor Nrf2, as shown by increased mRNA levels of Nrf2 target genes, including PDGF-A. Using pharmacological activator and inhibitor of Nrf2, we further provide evidence that Nrf2 is an important player in PDGFRα signaling that mediates expression of PDGF-A and impaired adipogenesis in Nck1-deficient BM-MSCs and C3H10T1/2 cells. CONCLUSION: This study demonstrates that Nck1 deficiency in mesenchymal stem cells impairs adipogenesis through activation of the PDGFRα-Nrf2 anti-adipogenic signaling pathway. Video Abstract.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células-Tronco Mesenquimais , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade , Proteínas Oncogênicas/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adipogenia , Animais , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Proteínas Oncogênicas/genética
16.
Asian-Australas J Anim Sci ; 33(11): 1837-1847, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32106662

RESUMO

OBJECTIVE: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. METHODS: The BM-MSCs have been differentiated into pancreatic ß-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. RESULTS: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic ß-like cells in the N2B27-based media than in the ADMEM-based media. CONCLUSION: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic ß-like cells.

17.
Mol Biol Rep ; 46(4): 4437-4441, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154604

RESUMO

Human mesenchymal stem cells (MSCs) are presently on the top of hierarchy in the field of stem cell therapy, due to their miraculous therapeutic abilities in diminishing the symptoms of many chronic diseases and initiating regeneration and repair for various damaged tissues and organs. The foremost initial step to reach high success rate in any MSCs based study is the optimization of culture growth media by establishing a suitable fetal bovine serum (FBS) percentage that suits the purpose of MSCs based experiment. Choosing the suitable FBS percentage is a controversial issue and merely depends on the researchers experience and suggested recommendations by the suppliers. Despite the huge improvements in overall MSCs investigating approaches, there are no definite protocols that set up a range of FBS percentages that can be followed. Toward achieving this objective, we evaluate in the present report the effect of using various FBS percentages (5-20%) added to DMEM low glucose media, on the biological behaviour of MSCs. Growing MSCs in high FBS percentages containing culture media (15% and 20% FBS) increase the proliferation and expansion rate of MSCs, although it decreases the immunosuppressive properties. On the other hand, adding low FBS percentage (7% FBS) to MSCs culture media enhanced the immunosuppression characteristics of MSCs, even though the proliferation rate was moderately reduced. 7% FBS is the cut off percentage that can be used without negatively altering major MSCs biological properties in which using 5% FBS will cause a tremendous decrease in the proliferation capacity and immunosuppressive properties. This report may assist other researchers in choosing appropriate FBS percentage when preparing MSCs culture media that serve the purpose of their MSCs based studies.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Bovinos/sangue , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas/metabolismo , Meios de Cultura/análise , Sangue Fetal/metabolismo , Humanos , Soro/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 51(12): 1258-1266, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31769473

RESUMO

SRC3 plays critical roles in various biological processes of diseases, including proliferation, apoptosis, migration, and cell cycle arrest. However, the effect of SRC3 expression in mesenchymal stem cells (MSCs) on multiple myeloma (MM) is not clear yet. In our study, MSCs (MSC-SRC3, MSC-SRC3-/-) and MM cells were co-cultured in a direct or indirect way. The proliferation of MM cells was studied by CCK-8 and colony formation assays. The apoptosis and cell cycle of MM cells were detected by flow cytometry. In addition, the expressions of proteins in MM cells were detected by western blot analysis and the secretions of cytokines were measured by ELISA. Our data showed that the expression of SRC3 in bone marrow mesenchymal stem cells (BM-MSCs) could promote cell proliferation and colony formation of MM cells through accelerating the transformation of the G1/S phase, no matter what kind of culture method was adopted. Meanwhile, SRC3 expressed in BM-MSCs could inhibit the apoptosis of MM cells through the caspase apoptosis pathway and mitochondrial apoptosis pathway. Moreover, SRC3 could enhance the adhesion ability of MM cells through up-regulating the expression of adhesion molecules including CXCL4, ICAM1, VLA4, and syndecan-1. SRC3 also played a regulatory role in the progress of MM through the NF-κB and PI-3K/Akt pathways. SRC3 expressed in MSCs was found to promote the growth and survival of MM cells, while SRC3 silencing in MSCs could inhibit the development of MM. These results would be useful for developing a more effective new strategy for MM treatment.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/metabolismo , Coativador 3 de Receptor Nuclear/fisiologia , Animais , Apoptose , Adesão Celular , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Andrologia ; 51(4): e13229, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30746735

RESUMO

Bone marrow mesenchymal stem cells (BM-MSCs) were first cultured under induction of retinoic acid (RA), Sertoli cells conditioned medium and RA + con (conditioned medium) as treatment groups. The presence of Sertoli cells was confirmed by immunocytochemistry of follicle-stimulating hormone receptor in Sertoli cells and flow cytometry by anti-Gata4 antibody. Cell viability and morphology of nucleus and cytoplasm of BM-MSCs were evaluated by MTT test and DAPI staining respectively. The expression of Oct4, Plzf, Scp3, Caspases 8, 9 and 3 genes was evaluated by RT-PCR. For increasing the accuracy of experiment, the expression of Vasa and SCP3 genes was investigated quantitatively by real-time PCR after 0, 5, 10, 15 days of culture. The results showed that the number of apoptotic cells increased in RA group. The expression of apoptosis genes (Caspases 3, 8 and 9) was also observed in this group all days of culture. Measurement of Vasa and Scp3 genes by RT-PCR confirmed the positive effects of retinoic acid on increasing of genes expression. So, in this study, a group with maximum expression of differentiation genes and minimum expression of apoptotic genes was RA + conditioned medium group. DNA fragmentation was not observed in all groups.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular , Células Germinativas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados , Citometria de Fluxo , Infertilidade Masculina/terapia , Masculino , Camundongos , Células de Sertoli , Tretinoína/metabolismo
20.
Cell Physiol Biochem ; 48(5): 2161-2171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114694

RESUMO

BACKGROUND/AIMS: The most appropriate route for bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation in the management of liver fibrosis remains controversial. This study investigated the therapeutic efficacy of intravenous and intrasplenic BM-MSC transplantation on carbon tetrachloride (CCl4)-induced rat liver fibrosis. METHODS: Fifty rats were divided into 5 groups (n = 10 rats per group): healthy control group, CCl4 group, CCl4/ recovery group, CCl4/BM-MSC intravenous group, and CCl4/BM-MSC intrasplenic group. BM-MSCs were isolated, labeled with green fluorescent protein (GFP), and injected into fibrotic rats either intravenously or intrasplenically. Gene expression of interleukins (IL-1ß and IL-6), interferon (INF)-γ, hepatic growth factor, and the hepatocyte-specific marker cytokeratin 18 was estimated by quantitative real-time reverse transcription-polymerase chain reaction. Vascular endothelial growth factor and connective tissue growth factor was detected by western blot analysis and enzyme-linked immunosorbent assay, respectively. At 2 weeks after intravenous and intrasplenic BM-MSC injections, GFP-positive cells were detected in liver tissue. RESULTS: Both routes achieved a similar enhancement of liver function, which was confirmed by histopathological examination. The intravenous route was more effective than the intrasplenic route in reducing gene expression levels of IL-1ß, IL-6, and INF-γ. However, fibrotic changes were still observed in the recovery group. CONCLUSION: Intravenous BM-MSC injection was an efficient and appropriate route for BM-MSC transplantation for the management of liver fibrosis.


Assuntos
Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais , Actinas/metabolismo , Administração Intravenosa , Animais , Células da Medula Óssea/citologia , Tetracloreto de Carbono/toxicidade , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Queratina-18/genética , Queratina-18/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Baço/patologia , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa