Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631801

RESUMO

We propose an improved BM3D algorithm for block-matching based on UNet denoising network feature maps and structural similarity (SSIM). In response to the traditional BM3D algorithm that directly performs block-matching on a noisy image, without considering the deep-level features of the image, we propose a method that performs block-matching on the feature maps of the noisy image. In this method, we perform block-matching on multiple depth feature maps of a noisy image, and then determine the positions of the corresponding similar blocks in the noisy image based on the block-matching results, to obtain the set of similar blocks that take into account the deep-level features of the noisy image. In addition, we improve the similarity measure criterion for block-matching based on the Structural Similarity Index, which takes into account the pixel-by-pixel value differences in the image blocks while fully considering the structure, brightness, and contrast information of the image blocks. To verify the effectiveness of the proposed method, we conduct extensive comparative experiments. The experimental results demonstrate that the proposed method not only effectively enhances the denoising performance of the image, but also preserves the detailed features of the image and improves the visual quality of the denoised image.

2.
J Synchrotron Radiat ; 28(Pt 3): 876-888, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949995

RESUMO

X-ray micro-tomography systems often suffer severe ring artifacts in reconstructed images. These artifacts are caused by defects in the detector, calibration errors, and fluctuations producing streak noise in the raw sinogram data. In this work, these streaks are modeled in the sinogram domain as additive stationary correlated noise upon logarithmic transformation. Based on this model, a streak removal procedure is proposed where the Block-Matching and 3-D (BM3D) filtering algorithm is applied across multiple scales, achieving state-of-the-art performance in both real and simulated data. Specifically, the proposed fully automatic procedure allows for attenuation of streak noise and the corresponding ring artifacts without creating major distortions common to other streak removal algorithms.

3.
Sensors (Basel) ; 21(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919367

RESUMO

Multi-view or light field images have recently gained much attraction from academic and commercial fields to create breakthroughs that go beyond simple video-watching experiences. Immersive virtual reality is an important example. High image quality is essential in systems with a near-eye display device. The compression efficiency is also critical because a large amount of multi-view data needs to be stored and transferred. However, noise can be easily generated during image capturing, and these noisy images severely deteriorate both the quality of experience and the compression efficiency. Therefore, denoising is a prerequisite to produce multi-view-based image contents. In this paper, the structural characteristics of linear multi-view images are fully utilized to increase the denoising speed and performance as well as to improve the compression efficiency. Assuming the sequential processes of denoising and compression, multi-view geometry-based denoising is performed keeping the temporal correlation among views. Experimental results show the proposed scheme significantly improves the compression efficiency of denoised views up to 76.05%, maintaining good denoising quality compared to the popular conventional denoise algorithms.

4.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795517

RESUMO

Noise, which is commonly generated in low-light environments or by low-performance cameras, is a major cause of the degradation of compression efficiency. In previous studies that attempted to combine a denoise algorithm and a video encoder, denoising was used independently of the code for pre-processing or post-processing. However, this process must be tightly coupled with encoding because noise affects the compression efficiency greatly. In addition, this represents a major opportunity to reduce the computational complexity, because the encoding process and a denoise algorithm have many similarities. In this paper, a simple, add-on denoising scheme is proposed through a combination of high-efficiency video coding (HEVC) and block matching three-dimensional collaborative filtering (BM3D) algorithms. It is known that BM3D has excellent denoise performance but that it is limited in its use due to its high computational complexity. This paper employs motion estimation in HEVC to replace the block matching of BM3D so that most of the time-consuming functions are shared. To overcome the challenging algorithmic differences, the hierarchical structure in HEVC is uniquely utilized. As a result, the computational complexity is drastically reduced while the competitive performance capabilities in terms of coding efficiency and denoising quality are maintained.

5.
Comput Methods Programs Biomed ; 246: 108042, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310712

RESUMO

Improving the quality of breast ultrasound images is of great significance for clinical diagnosis which can greatly boost the diagnostic accuracy of ultrasonography. However, due to the influence of ultrasound imaging principles and acquisition equipment, the collected ultrasound images naturally contain a large amount of speckle noise, which leads to a decrease in image quality and affects clinical diagnosis. To overcome this problem, we propose an improved denoising algorithm combining multi-filter DFrFT (Discrete Fractional Fourier Transform) and the adaptive fast BM3D (Block Matching and 3D collaborative filtering) method. Firstly, we provide the multi-filtering DFrFT method for preprocessing the original breast ultrasound image so as to remove some speckle noise early in fractional transformation domain. Based on the fractional frequency spectrum characteristics of breast ultrasound images, three types of filters are designed correspondingly in low, medium, and high frequency domains. And by integrating filtered images, the enhanced images are obtained which not only remove some speckle noise in background but also preserve the details of breast lesions. Secondly, for further enhancing the image quality on the basis of multi-filter DFrFT, we propose the adaptive fast BM3D method by introducing the DBSCAN-based super pixel segmentation to block matching process, which utilizes super pixel segmentation labels to provide a reference on how similar it is between target block and retrieval blocks. It reduces the number of blocks to be retrieved and make the matched blocks with more similar features. At last, the local noise parameter estimation is also adopted in the hard threshold filtering process of traditional BM3D algorithm to achieve local adaptive filtering and further improving the denoising effect. The synthetic data and real breast ultrasound data examples show that this combined method can improve the speckle suppression level and keep the fidelity of structure effectively without increasing time cost.


Assuntos
Algoritmos , Ultrassonografia Mamária , Feminino , Humanos , Ultrassonografia/métodos
6.
J Imaging Inform Med ; 37(4): 1440-1457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38409609

RESUMO

Breast cancer, a widespread global disease, represents a significant threat to women's health and lives, ranking as one of the most vulnerable malignant tumors they face. Many researchers have proposed their computer-aided diagnosis systems for classifying breast cancer. The majority of these approaches primarily utilize deep learning (DL) methods, which are not entirely reliable. These approaches overlook the crucial necessity of incorporating both local and global information for precise tumor detection, despite the fact that the subtle nuances are crucial for precise breast cancer classification. In addition, there are a limited number of publicly available breast cancer datasets, and the ones that are available tend to be imbalanced in nature. Therefore, this paper presents the hybrid breast mass detection-network (HBMD-Net) to address two critical challenges: class imbalance and the need to recognize that relying solely on either global or local features falls short in achieving precise tumor classification. To overcome the problem of class imbalance, HBMD-Net incorporates the borderline synthetic minority over-sampling technique (BSMOTE). Simultaneously, it employs a feature fusion approach, combining features by utilizing ResNet50 to extract deep features that provide global information, while handcrafted features are derived using histogram orientation gradient (HOG), that provide local information. In addition, an ROI segmentation has been implemented to avoid misclassifications. This integrated strategy substantially enhances breast cancer classification performance. Moreover, the proposed method integrates the block matching and 3D (BM3D) denoising filter to effectively eliminate multiplicative noise that has enhanced the performance of the system. The evaluation of the proposed HBMD-Net encompasses two breast ultrasound (BUS) datasets, namely BUSI and UDIAT. The proposed model has demonstrated a satisfactory performance, achieving accuracies of 99.14% and 94.49% respectively.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Feminino , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Mama/diagnóstico por imagem , Mama/patologia , Algoritmos , Bases de Dados Factuais , Diagnóstico por Computador/métodos , Mamografia/métodos
7.
Phys Med ; 124: 103432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996628

RESUMO

PURPOSE: This study aimed to acquire an image quality consistent with that of full-dose chest computed tomography (CT) when obtaining low-dose chest CT images and to analyze the effects of block-matching and 3D (BM3D) filters on lung density measurements and noise reduction in lung parenchyma. METHODS: Using full-dose chest CT images, we evaluated lung density measurements and noise reduction in lung parenchyma images for low-dose chest CT. Three filters (median, Wiener, and the proposed BM3D) were applied to low-dose chest CT images for comparison and analysis with images from full-dose chest CT. To evaluate lung density measurements, we measured CT attenuation at the 15th percentile of the lung CT histogram. The coefficient of variation (COV) and contrast-to-noise ratio (CNR) were used to evaluate the noise level. RESULTS: The 15th percentile of the lung CT histogram showed the smallest difference between full- and low-dose CT when applying the BM3D filter, and the highest difference between full- and low-dose CT without filters (full-dose =  - 926.28 ± 0.32, BM3D =  - 926.65 ± 0.32, and low-dose =  - 959.43 ± 0.95) (p < 0.05). The COV was smallest when applying the BM3D filter, whereas the CNR was the highest (p < 0.05). CONCLUSIONS: The results of the study prove that the BM3D filter can reduce image noise while increasing the reproducibility of the lung density, even for low-dose chest CT.


Assuntos
Pulmão , Doses de Radiação , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Humanos , Projetos Piloto , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Reprodutibilidade dos Testes , Masculino , Radiografia Torácica , Feminino , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Idoso , Adulto
8.
Appl Radiat Isot ; 210: 111374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805985

RESUMO

Computed tomography (CT), known for its exceptionally high accuracy, is associated with a substantial dose of ionizing radiation. Low-dose protocols have been devised to address this issue; however, a reduction in the radiation dose can lead to a deficiency in the number of photons, resulting in quantum noise. Thus, the aim of this study was to optimize the smoothing parameter (σ-value) of the block matching and 3D filtering (BM3D) algorithm to effectively reduce noise in low-dose chest and abdominal CT images. Acquired images were subsequently analyze using quantitative evaluation metrics, including contrast to noise ratio (CNR), coefficient of variation (CV), and naturalness image quality evaluator (NIQE). Quantitative evaluation results demonstrated that the optimal σ-value for CNR, CV, and NIQE were 0.10, 0.11, and 0.09 in low-dose chest CT images respectively, whereas those in abdominal images were 0.12, 0.11, and 0.09, respectively. The average of the optimal σ-values, which produced the most improved results, was 0.10, considering both visual and quantitative evaluations. In conclusion, we demonstrated that the optimized BM3D algorithm with σ-value is effective for noise reduction in low-dose chest and abdominal CT images indicating its feasibility of in the clinical field.


Assuntos
Algoritmos , Doses de Radiação , Radiografia Abdominal , Radiografia Torácica , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Radiografia Abdominal/métodos , Radiografia Torácica/métodos , Imageamento Tridimensional/métodos , Razão Sinal-Ruído , Imagens de Fantasmas
9.
Microscopy (Oxf) ; 71(5): 283-288, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-35707877

RESUMO

In the various papers published in the field of super-resolution microscopy, denoising of raw images based on block-matching and 3D filtering (BM3D) was rarely reported. BM3D for blocks of different sizes was studied. The denoising ability is related to block sizes. The larger the block is, the better the denoising effect is. When the block size is >40, a good denoising effect can be achieved. Denoising has a great influence on the super-resolution reconstruction effect and the reconstruction time. Better super-resolution reconstruction and shorter reconstruction time can be achieved after denoising. Using compressed sensing, only 20 raw images are needed for super-resolution reconstruction. The temporal resolution is less than half a second. The spatial resolution is also greatly improved.

10.
PeerJ ; 9: e11642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395064

RESUMO

A new hyperspectral images (HSIs) denoising method via Interpolated Block-Matching and 3D filtering and Guided Filtering (IBM3DGF) denoising method is proposed. First, inter-spectral correlation analysis is used to obtain inter-spectral correlation coefficients and divide the HSIs into several adjacent groups. Second, high-resolution HSIs are produced by using adjacent three images to interpolate. Third, Block-Matching and 3D filtering (BM3D) is conducted to reduce the noise level of each group; Fourth, the guided image filtering is utilized to denoise HSI of each group. Finally, the inverse interpolation is applied to retrieve HSI. Experimental results of synthetic and real HSIs showed that, comparing with other state-of-the-art denoising methods, the proposed IBM3DGF method shows superior performance according to spatial and spectral domain noise assessment. Therefore, the proposed method has a potential to effectively remove the spatial/spectral noise for HSIs.

11.
Diagnostics (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445723

RESUMO

Automated detection of vision threatening eye disease based on high resolution retinal fundus images requires accurate segmentation of the blood vessels. In this regard, detection and segmentation of finer vessels, which are obscured by a considerable degree of noise and poor illumination, is particularly challenging. These noises include (systematic) additive noise and multiplicative (speckle) noise, which arise due to various practical limitations of the fundus imaging systems. To address this inherent issue, we present an efficient unsupervised vessel segmentation strategy as a step towards accurate classification of eye diseases from the noisy fundus images. To that end, an ensemble block matching 3D (BM3D) speckle filter is proposed for removal of unwanted noise leading to improved detection. The BM3D-speckle filter, despite its ability to recover finer details (i.e., vessels in fundus images), yields a pattern of checkerboard artifacts in the aftermath of multiplicative (speckle) noise removal. These artifacts are generally ignored in the case of satellite images; however, in the case of fundus images, these artifacts have a degenerating effect on the segmentation or detection of fine vessels. To counter that, an ensemble of BM3D-speckle filter is proposed to suppress these artifacts while further sharpening the recovered vessels. This is subsequently used to devise an improved unsupervised segmentation strategy that can detect fine vessels even in the presence of dominant noise and yields an overall much improved accuracy. Testing was carried out on three publicly available databases namely Structured Analysis of the Retina (STARE), Digital Retinal Images for Vessel Extraction (DRIVE) and CHASE_DB1. We have achieved a sensitivity of 82.88, 81.41 and 82.03 on DRIVE, SATARE, and CHASE_DB1, respectively. The accuracy is also boosted to 95.41, 95.70 and 95.61 on DRIVE, SATARE, and CHASE_DB1, respectively. The performance of the proposed methods on images with pathologies was observed to be more convincing than the performance of similar state-of-the-art methods.

12.
Med Phys ; 46(1): 190-198, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30351450

RESUMO

PURPOSE: It is important to enhance image quality for low-dose CT acquisitions to push the ALARA boundary. Current state-of-the-art block-matching three-dimensional (BM3D) denoising scheme assumes white Gaussian noise (WGN) model. This study proposes a novel filtering module to be incorporated into the BM3D framework for ultra-low-dose CT denoising, by accounting for its specific power spectral properties. METHODS: In the current BM3D algorithm, the Wiener filtering is applied in the transform domain to a post-thresholding signal for enhanced denoising. However, unlike most natural/synthetic images, low-dose CTs do not obey the ideal Gaussian noise model. Based on the specific noise properties of ultra-low-dose CT, we derive the optimal transform-domain coefficients of Wiener filter based on the minimum mean-square-error (MMSE) criterion, taking the noise spectrum and the signal/noise cross spectrum into consideration. In the absence of ground-truth signal, the hard-thresholding denoising module in the previous stage is used as a plug-in estimator. We evaluate the denoising performance on thoracic CT image datasets containing paired full-dose and ultra-low-dose images simulated by a well-validated clinical engine (or pipeline). We also assess its clinical implication by applying the denoising methods to the emphysema quantification task. Our modified BM3D method is compared with the current one, using peak signal-to-noise ratio (PSNR) and emphysema scoring results as evaluation metrics. RESULTS: The noise in ultra-low-dose CT presented distinct non-Gaussian characteristics and was correlated with image intensity. Performance evaluation showed that the current Wiener filter in basic BM3D algorithm yielded little denoising enhancement on ultra-low-dose CT images. In contrast, the proposed Wiener filter achieved (1.46, 1.91) dB performance gain in mean and median peak signal-to-noise ratio (PSNR) for 5%-dose image denoising and (0.93, 0.95) dB improvement for 10% dose. A paired t-test of the PSNRs between denoising using the current and the proposed Wiener filters demonstrated statistically significant improvement, yielding P-values of 1.45E-12 and 1.34E-7 on 5% and 10%-dose images, respectively. In addition, emphysema quantification on the denoised images using the modified BM3D method also had statistically significant advantage over that using the current BM3D scheme, resulting in a P-value of 6.30E-5 with the commonly used measure. CONCLUSIONS: This work tailors the Wiener filter in BM3D algorithm to data statistics and demonstrates statistically significant performance improvement on ultra-low-dose CT image denoising and a subsequent emphysema quantification task. Such performance gain is more pronounced with a lower dose level. The development and rationale are generally enough for other image denoising tasks when the WGN assumption is violated.


Assuntos
Imageamento Tridimensional/métodos , Doses de Radiação , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Algoritmos , Enfisema/diagnóstico por imagem , Humanos , Distribuição Normal
13.
Med Phys ; 45(6): 2603-2610, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29663467

RESUMO

PURPOSE: Megavoltage CT (MVCT) images are noisier than kilovoltage CT (KVCT) due to low detector efficiency to high-energy x rays. Conventional denoising methods compromise edge resolution and low-contrast object visibility. In this work, we incorporated block-matching 3D-transform shrinkage (BM3D) transformation into MVCT iterative reconstruction as nonlocal patch-wise regularization. METHODS: The iterative reconstruction was achieved by adding to the existing least square data fidelity objective a regularization term, formulated as the L1 norm of the BM3D transformed image. A Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) was adopted to accelerate CT reconstruction. The proposed method was compared against total variation (TV) regularization, BM3D postprocess method, and filtered back projection (FBP). RESULTS: In the Catphan phantom study, BM3D regularization better enhances low-contrast objects compared with TV regularization and BM3D postprocess method at the same noise level. The spatial resolution using BM3D regularization is 2.79 and 2.55 times higher than that using the TV regularization at 50% of the modulation transfer function (MTF) magnitude, for the fully sampled reconstruction and down-sampled reconstruction, respectively. The BM3D regularization images show better bony details and low-contrast soft tissues, on the head and neck (H&N) and prostate patient images. CONCLUSIONS: The proposed iterative BM3D regularization CT reconstruction method takes advantage of both the BM3D denoising capability and iterative reconstruction data fidelity consistency. This novel approach is superior to TV regularized iterative reconstruction or BM3D postprocess for improving noisy MVCT image quality.


Assuntos
Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imageamento Tridimensional/instrumentação , Análise dos Mínimos Quadrados , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada por Raios X/instrumentação
14.
EURASIP J Image Video Process ; 2018(1): 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258615

RESUMO

Image denoising is considered a salient pre-processing step in sophisticated imaging applications. Over the decades, numerous studies have been conducted in denoising. Recently proposed Block matching and 3D (BM3D) filtering added a new dimension to the study of denoising. BM3D is the current state-of-the-art of denoising and is capable of achieving better denoising as compared to any other existing method. However, there is room to improve BM3D to achieve high-quality denoising. In this study, to improve BM3D, we first attempted to improve the Wiener filter (the core of BM3D) by maximizing the structural similarity (SSIM) between the true and the estimated image, instead of minimizing the mean square error (MSE) between them. Moreover, for the DC-only BM3D profile, we introduced a 3D zigzag thresholding. Experimental results demonstrate that regardless of the type of the image, our proposed method achieves better denoising performance than that of BM3D.

15.
Comput Methods Programs Biomed ; 166: 61-75, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30415719

RESUMO

BACKGROUND AND OBJECTIVE: The purpose of this paper is to propose a fully automated liver vessel segmentation algorithm including portal vein and hepatic vein on contrast enhanced CTA images. METHODS: First, points of a vessel candidate region are extracted from 3-dimensional (3D) CTA image. To generate accurate points, we reduce 3D segmentation problem to 2D problem by generating multiple maximum intensity (MI) images. After the segmentation of MI images, we back-project pixels to the original 3D domain. We call these voxels as vessel candidates (VCs). A large set of MI images can produce very dense and accurate VCs. Finally, for the accurate segmentation of a vessel region, we propose a newly designed active contour model (ACM) that uses the original image, vessel probability map from dense VCs, and the good prior of an initial contour. RESULTS: We used 55 abdominal CTAs for a parameter study and a quantitative evaluation. We evaluated the performance of the proposed method comparing with other state-of-the-art ACMs for vascular images applied directly to the original data. The result showed that our method successfully segmented vascular structure 25%-122% more accurately than other methods without any extra false positive detection. CONCLUSION: Our model can generate a smooth and accurate boundary of the vessel object and easily extract thin and weak peripheral branch vessels. The proposed approach can automatically segment a liver vessel without any manual interaction. The detailed result can aid further anatomical studies.


Assuntos
Angiografia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Algoritmos , Reações Falso-Positivas , Humanos , Aumento da Imagem , Distribuição Normal , Radiografia Abdominal , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
16.
EURASIP J Image Video Process ; 2017(1): 58, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32010201

RESUMO

BACKGROUND: Digital images are captured using sensors during the data acquisition phase, where they are often contaminated by noise (an undesired random signal). Such noise can also be produced during transmission or by poor-quality lossy image compression. Reducing the noise and enhancing the images are considered the central process to all other digital image processing tasks. The improvement in the performance of image denoising methods would contribute greatly on the results of other image processing techniques. Patch-based denoising methods recently have merged as the state-of-the-art denoising approaches for various additive noise levels. In this work, the use of the state-of-the-art patch-based denoising methods for additive noise reduction is investigated. Various types of image datasets are addressed to conduct this study. METHODS: We first explain the type of noise in digital images and discuss various image denoising approaches, with a focus on patch-based denoising methods. Then, we experimentally evaluate both quantitatively and qualitatively the patch-based denoising methods. The patch-based image denoising methods are analyzed in terms of quality and computational time. RESULTS: Despite the sophistication of patch-based image denoising approaches, most patch-based image denoising methods outperform the rest. Fast patch similarity measurements produce fast patch-based image denoising methods. CONCLUSION: Patch-based image denoising approaches can effectively reduce noise and enhance images. Patch-based image denoising approach is the state-of-the-art image denoising approach.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa