Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Extremophiles ; 20(6): 855-873, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27620454

RESUMO

The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545-2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.


Assuntos
Altitude , Bactérias/isolamento & purificação , Florestas , Fungos/isolamento & purificação , Microbiota , Microbiologia do Solo , Bactérias/genética , Fungos/genética , RNA Ribossômico 16S/genética , Estações do Ano
2.
Biodivers Data J ; 10: e87459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761655

RESUMO

The chrysomelid beetlesPodontiaaffinis and Silanafarinosa are members of the subfamilies Galerucinae and Cassidinae, respectively. This study, based on 16S rRNA gene-targeted metagenomics sequencing, reports the core members and differential abundance of bacterial communities in the larvae and adult beetles of P.affinis and the adult S.farinosa. Cyanobacteria/Melainabacteria group was the predominant phylum in the larvae of P.affinis, while Proteobacteria was the predominant phylum in adult P.affinis and S.farinosa. The number of Order, Family, Genus and Species OTUs in the adult stage of P.affinis was higher than that in the larval stage. The bacterial species richness of adult P.affinis was significantly higher than that of adult S.farinosa. Betaproteobacteria was the predominant class in adult P.affinis, Cyanobacteria in the larvae of P.affinis and Gammaproteobacteria in S.farinosa. The larvae and adult beetles of P.affinis and adult S.farinosahad a low number of unique and shared bacterial OTUs (> 5% relative abundance). The differences in the microbiota indicate possible differences in nutrient assimilation, host taxonomy and other stochastic processes. These findings provide new information to our understanding of the bacteria associated with specialist phytophagous chrysomelid beetles and beetles in general.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa