Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 32: 373-397, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27146312

RESUMO

Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.


Assuntos
Bactérias/metabolismo , Células/microbiologia , Citoesqueleto de Actina/metabolismo , Animais , Autofagia , Células/patologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade
2.
Mol Cell ; 82(18): 3484-3498.e11, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070765

RESUMO

ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.


Assuntos
RNA Catalítico , Sistemas de Secreção Tipo VI , ADP Ribose Transferases/química , Difosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Bactérias/genética , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease P/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(3): e2312455121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194450

RESUMO

Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.


Assuntos
Gafanhotos , Toxinas Biológicas , Sistemas de Secreção Tipo VII , Animais , Sistemas de Secreção Tipo VII/genética , Citoplasma
4.
Adv Exp Med Biol ; 1435: 219-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175478

RESUMO

Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Enterocolite Pseudomembranosa , Humanos , Toxinas Bacterianas/toxicidade , Transporte Biológico , Anticorpos Antibacterianos
5.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740721

RESUMO

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Assuntos
Antibacterianos , Bandagens , Quitosana , Escherichia coli , Hidrogéis , Microesferas , Pseudomonas aeruginosa , Staphylococcus aureus , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/prevenção & controle , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Catelicidinas , Testes de Sensibilidade Microbiana/métodos , Toxinas Bacterianas , Liberação Controlada de Fármacos , Movimento Celular/efeitos dos fármacos , Carbono/química , Biofilmes/efeitos dos fármacos
6.
Infect Immun ; 91(11): e0023623, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37861311

RESUMO

Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.


Assuntos
Infecções Bacterianas , Toxinas Bacterianas , Clostridioides difficile , Gastroenteropatias , Humanos , Toxinas Bacterianas/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Linfócitos , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo
7.
J Bacteriol ; 204(9): e0020022, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36043862

RESUMO

It was previously demonstrated that anthrax toxin activator (AtxA) binds directly to the σA-like promoter region of pagA (encoding protective antigen, PA) immediately upstream of the RNA polymerase binding site. In this study, using electrophoretic mobility shift assays and in vivo analyses, we identified AtxA-binding sites in the promoter regions of the lef and cya genes (encoding lethal and edema factors, respectively) and of two Bacillus anthracis small RNAs (XrrA and XrrB). Activities of all four newly studied promoters were enhanced in the presence of CO2/bicarbonate and AtxA, as previously seen for the pagA promoter. Notably, the cya promoter was less activated by AtxA and CO2/bicarbonate conditions. The putative promoter of a recently described third small RNA, XrrC, showed a negligible response to AtxA and CO2/bicarbonate. RNA polymerase binding sites of the newly studied promoters show no consensus and differ from the σA-like promoter region of pagA. In silico analysis of the probable AtxA binding sites in the studied promoters revealed several palindromes. All the analyzed palindromes showed very little overlap with the σA-like pagA promoter. It remains unclear as to how AtxA and DNA-dependent RNA-polymerase identify such diverse DNA-sequences and differentially regulate promoter activation of the studied genes. IMPORTANCE Anthrax toxin activator (AtxA) is the major virulence regulator of Bacillus anthracis, the causative agent of anthrax. Understanding AtxA's mechanism of regulation could facilitate the development of therapeutics for B. anthracis infection. We provide evidence that AtxA binds to the promoters of the cya, lef, xrrA, and xrrB genes. In vivo assays confirmed the activities of all four promoters were enhanced in the presence of AtxA and CO2/bicarbonate, as previously seen for the pagA promoter. The cya and lef genes encode important toxin components. The xrrA and xrrB genes encode sRNAs with a suggested function as cell physiology regulators. Our data provides further evidence for the direct regulatory role of AtxA that was previously shown with the pagA promoter.


Assuntos
Bacillus anthracis , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA/metabolismo
8.
J Proteome Res ; 21(2): 547-556, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968056

RESUMO

We addressed here the need for improved sensitivity of top-down mass spectrometry for identification, differentiation, and absolute quantification of sequence variants of SEA, a bacterial toxin produced by Staphylococcus aureus and regularly involved in food poisoning outbreaks (FPO). We combined immunoaffinity enrichment, a protein internal standard, and optimized acquisition conditions, either by full-scan high-resolution mass spectrometry (HRMS) or multiplex parallel reaction monitoring (PRM) mode. Deconvolution of full-scan HRMS signal and PRM detection of variant-specific fragment ions allowed confident identification of each SEA variant. Summing the PRM signal of variant-common fragment ions was most efficient for absolute quantification, illustrated by a sensitivity down to 2.5 ng/mL and an assay variability below 15%. Additionally, we showed that relative PRM fragment ion abundances constituted a supplementary specificity criterion in top-down quantification. The top-down method was successfully evaluated on a panel of enterotoxin-producing strains isolated during FPO, in parallel to the conventional whole genome sequencing, ELISA, and bottom-up mass spectrometry methods. Top-down provided at the same time correct identification of the SEA variants produced and precise determination of the toxin level. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01710.


Assuntos
Enterotoxinas , Microbiologia de Alimentos , Enterotoxinas/análise , Enterotoxinas/genética , Enterotoxinas/metabolismo , Espectrometria de Massas/métodos , Staphylococcus aureus/metabolismo
9.
Mol Microbiol ; 115(3): 383-394, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217073

RESUMO

The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers proteins to neighboring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that inhibit the growth of other species and help to dominate the niche. A broad variety of these toxins cause cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner tube and spike components that act as carriers. Toxic effectors can be translationally fused to the secreted components or interact with them through specialized structural domains. These interactions can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in effector-associated domains are subject to genetic rearrangements and therefore engage in the diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted toxins and presents current knowledge about their loading on the T6SS machinery.


Assuntos
Proteínas de Bactérias/fisiologia , Chaperonas Moleculares/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Sequência Conservada , Citoplasma/efeitos dos fármacos , Interações Microbianas , Periplasma/efeitos dos fármacos , Domínios Proteicos
10.
Cytokine ; 153: 155862, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306427

RESUMO

Group 3 innate lymphocytes (ILC3s) are important immune cells within mucosal tissues and protect against bacterial infections. They can be activated in response to the innate cytokines IL-23 or IL-1ß, which rapidly increases their production of effector molecules that regulate barrier functions. Pathogens can subvert these anti-bacterial effects to evade mucosal defenses to infect the host. Bacillus anthracis, the causative agent of anthrax, produces two major toxins that can modulate the immune response. We have previously shown that lethal toxin downmodulates the function of ILC3s. On the other hand, edema toxin has been shown promote T helper 17 (Th17) cell differentiation, adaptive counterparts of ILC3s, via elevation of cyclic adenosine monophosphate (cAMP). We hypothesized that edema toxin may also modulate ILC3 function. In this study, we show that edema toxin has the opposite effect of lethal toxin; edema toxin directly activates ILC3s independently of innate cytokine stimulation. Treatment of a mouse ILC3-like cell line with edema toxin, a potent adenylate cyclase, upregulated production of the cytokine IL-22, a major effector molecule of ILC3s and a critical factor in maintaining mucosal barriers. Forskolin treatment phenocopied the effect observed with edema toxin and led to an increase in CREB phosphorylation in ILC3s. This observation has potential implications for a role for cAMP signaling in the activation of ILC3s.


Assuntos
Toxinas Bacterianas , Animais , Antígenos de Bactérias , Toxinas Bacterianas/farmacologia , AMP Cíclico , Citocinas , Edema , Imunidade Inata , Interleucinas , Linfócitos , Camundongos , Interleucina 22
11.
Anaerobe ; 77: 102468, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34688909

RESUMO

OBJECTIVE: Paeniclostridium sordellii is a pathogen that causes rapidly fatal infections characterized by severe edema, extreme leukemoid reaction and lack of an innate immune response. We recently identified a metalloproteinase of P. sordellii-1 (Mcs1) that cleaves human vascular cell adhesion molecule 1, an adhesion molecule important to hematopoietic precursor retention and leukocyte diapedesis. In the current study, we further characterize Mcs1 activity and investigate its role in pathogenesis. METHODS: Mcs1 peptide cleavage sequence and activity conditions were identified using a semi-quantitative fluorescence-based reporter assay. Additional host targets for Mcs1 protease activity were tested and confirmed by gel electrophoreses and western blots. Finally, Mcs1 knock out (ΔMcs1) and complemented (cMcs1) strains were developed for assessment in our animal model of myonecrosis. RESULTS: Data show that Mcs1 prefers aliphatic amino acid residues, I or L, especially when adjacent to negatively charged or noncharged-polar residues. In vitro, Mcs1 cleaved or partially cleaved human cell adhesion molecules, E-selectin and intracellular adhesion molecule-1 (ICAM-1), and mediators of innate immune infection defense, complement protein-3 and antimicrobial peptide LL-37. In vivo, infection with the ΔMcs1 P. sordellii strain had little effect on animal survival, tissue destruction or circulating white blood cell counts compared to wild type and cMcs1 strains. CONCLUSIONS: Similar to proteolytic virulence factors from other pathogens, Mcs1 is a promiscuous protease that cleaves multiple human-host factors. Despite minimal impact of Mcs1 on the murine model of P. sordellii infection, it is worth considering its role in humans and other animal models.


Assuntos
Infecções por Clostridium , Clostridium sordellii , Peptídeo Hidrolases , Animais , Humanos , Camundongos , Clostridium sordellii/enzimologia , Modelos Animais de Doenças , Peptídeo Hidrolases/genética , Fatores de Virulência , Infecções por Clostridium/microbiologia , Proteínas de Bactérias/genética
12.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555283

RESUMO

The colibactin island (pks) of Escherichia coli formed by 19 genes (55-Kb), encodes non-ribosomal peptide (NRP) and polyketide (PK) synthases, which allow the synthesis of colibactin, a suspected hybrid PK-NRP compound that causes damage to DNA in eukaryotic cells. The clbP, an unusual essential gene, is found in the operon structure with the clbS gene in the pks-encoded machinery. Interestingly, the clbP gene has been annotated as a ß-lactamase but no previous study has reported its ß-lactamase characteristics. In this study, we (i) investigated the ß-lactamase properties of the clbP gene in silico by analysing its phylogenetic relationship with bacterial ß-lactamase and peptidase enzymes, (ii) compared its three-dimensional (3D) protein structure with those of bacterial ß-lactamase proteins using the Phyr2 database and PyMOL software, and (iii) evaluated in vitro its putative enzymatic activities, including ß-lactamase, nuclease, and ribonuclease using protein expression and purification from an E. coli BL21 strain. In this study, we reveal a structural configuration of toxin/antitoxin systems in this island. Thus, similar to the toxin/antitoxin systems, the role of the clbP gene within the pks-island gene group appears as an antitoxin, insofar as it is responsible for the activation of the toxin, which is colibactin. In silico, our analyses revealed that ClbP belonged to the superfamily of ß-lactamase, class C. Furthermore, in vitro we were unable to demonstrate its ß-lactamase activity, likely due to the fact that the clbP gene requires co-expression with other genes, such as the genes present in the pks-island (19 genes). More research is needed to better understand its actions, particularly with regards to antibiotics, and to discover whether it has any additional functions due to the importance of this gene and its toxicity.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Genes vif , Filogenia , Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo
13.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955837

RESUMO

Adenylate Cyclase Toxin (ACT or CyaA) is one of the important virulence factors secreted by Bordetella pertussis, the bacterium causative of whooping cough. ACT debilitates host defenses by production of unregulated levels of cAMP into the cell cytosol upon delivery of its N-terminal domain with adenylate cyclase activity (AC domain) and by forming pores in the plasma membrane of macrophages. Binding of soluble toxin monomers to the plasma membrane of target cells and conversion into membrane-integrated proteins are the first and last step for these toxin activities; however, the molecular determinants in the protein or the target membrane that govern this conversion to an active toxin form are fully unknown. It was previously reported that cytotoxic and cytolytic activities of ACT depend on membrane cholesterol. Here we show that ACT specifically interacts with membrane cholesterol, and find in two membrane-interacting ACT domains, four cholesterol-binding motifs that are essential for AC domain translocation and lytic activities. We hypothesize that direct ACT interaction with membrane cholesterol through those four cholesterol-binding motifs drives insertion and stabilizes the transmembrane topology of several helical elements that ultimately build the ACT structure for AC delivery and pore-formation, thereby explaining the cholesterol-dependence of the ACT activities. The requirement for lipid-mediated stabilization of transmembrane helices appears to be a unifying mechanism to modulate toxicity in pore-forming toxins.


Assuntos
Bordetella pertussis , Células Eucarióticas , Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Colesterol/metabolismo , Eritrócitos/metabolismo , Células Eucarióticas/metabolismo
14.
Angew Chem Int Ed Engl ; 61(6): e202111416, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816575

RESUMO

The detection of Rhamnolipid virulence factor produced by Pseudomonas aeruginosa involved in nosocomial infections is reported by using the redox liposome single impact electrochemistry. Redox liposomes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine as a pure phospholipid and potassium ferrocyanide as an encapsulated redox content are designed for using the interaction of the target toxin with the lipid membrane as a sensing strategy. The electrochemical sensing principle is based on the weakening of the liposomes lipid membrane upon interaction with Rhamnolipid toxin which leads upon impact at an ultramicroelectrode to the breakdown of the liposomes and the release/electrolysis of its encapsulated redox probe. We present as a proof of concept the sensitive and fast sensing of a submicromolar concentration of Rhamnolipid which is detected after less than 30 minutes of incubation with the liposomes, by the appearing of current spikes in the chronoamperometry measurement.


Assuntos
Toxinas Bacterianas/análise , Técnicas Eletroquímicas , Glicolipídeos/análise , Fosfatidiletanolaminas/química , Pseudomonas aeruginosa/química , Lipossomos/química , Oxirredução
15.
Infect Immun ; 89(12): e0034821, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543122

RESUMO

Helicobacter pylori VacA is a secreted toxin that assembles into water-soluble oligomeric structures and forms anion-selective membrane channels. Acidification of purified VacA enhances its activity in cell culture assays. Sites of protomer-protomer contact within VacA oligomers have been identified by cryoelectron microscopy, and in the current study, we validated several of these interactions by chemical cross-linking and mass spectrometry. We then mutated amino acids at these contact sites and analyzed the effects of the alterations on VacA oligomerization and activity. VacA proteins with amino acid charge reversals at interprotomer contact sites retained the capacity to assemble into water-soluble oligomers and retained cell-vacuolating activity. Introduction of paired cysteine substitutions at these sites resulted in formation of disulfide bonds between adjacent protomers. Negative-stain electron microscopy and single-particle two-dimensional class analysis revealed that wild-type VacA oligomers disassemble when exposed to acidic pH, whereas the mutant proteins with paired cysteine substitutions retain an oligomeric state at acidic pH. Acid-activated wild-type VacA caused vacuolation of cultured cells, whereas acid-activated mutant proteins with paired cysteine substitutions lacked cell-vacuolating activity. Treatment of these mutant proteins with both low pH and a reducing agent resulted in VacA binding to cells, VacA internalization, and cell vacuolation. Internalization of a nonoligomerizing mutant form of VacA by host cells was detected without a requirement for acid activation. Collectively, these results enhance our understanding of the molecular interactions required for VacA oligomerization and support a model in which toxin activity depends on interactions of monomeric VacA with host cells.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
16.
Infection ; 49(4): 617-629, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33860474

RESUMO

In patients who develop sepsis, whether due to primary, secondary or metastatic lesions, the skin is frequently affected. However, there are unresolved aspects regarding the general clinical manifestations in the skin or the prognosis and/or therapeutic implications. The main challenge in the approach to sepsis is its early diagnosis and management. In this review, we address the sepsis-skin relationship and the potential impact of early dermatological intervention on the septic patient through ten basic questions. We found little evidence of the participation of the dermatologist in sepsis alert programs. There are early skin changes that may alert clinicians on a possible sepsis, such as skin mottling or variations in acral skin temperature. In addition, the skin is an accessible and highly cost-effective tissue for etiological studies of some forms of sepsis (e.g., meningococcal purpura) and its involvement defines the prognosis of certain patients (e.g., infective endocarditis).


Assuntos
Dermatologia , Endocardite Bacteriana , Endocardite , Sepse , Humanos , Sepse/diagnóstico , Pele
17.
Appl Microbiol Biotechnol ; 105(5): 1803-1821, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33582835

RESUMO

Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.


Assuntos
Antitoxinas , Toxinas Bacterianas , Sistemas Toxina-Antitoxina , Bactérias/genética , Proteínas de Bactérias/genética , Sistemas Toxina-Antitoxina/genética
18.
Handb Exp Pharmacol ; 263: 11-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31792680

RESUMO

Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.


Assuntos
Toxinas Botulínicas , Proteínas de Bactérias , Humanos
19.
Anaerobe ; 67: 102299, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33227427

RESUMO

Clostridium difficile infection (CDI) recurs in ∼20% of patients. Prior studies indicated that antibody responses directed against the C. difficile toxins A and B were potentially associated with lower risk of recurrent CDI. Here we tested the hypothesis that circulating anti-toxin IgG antibody levels associate with reduced risk of recurrent CDI. A cohort study with prospective enrollment and retrospective data abstraction examined antibody levels in 275 adult patients at the University of Michigan with CDI. We developed an enzyme linked immunosorbent assay to detect IgG antibodies against toxin A and toxin B in sera obtained at the time of diagnosis. Logistic regression examined the relationship between antibody levels and recurrence, and sensitivity tests evaluated for follow-up and survivor biases, history of CDI, and PCR ribotype. Follow-up data were available for 174 subjects, of whom 36 (20.7%) had recurrence. Comparing antibody levels vs. recurrence and CDI history, anti-toxin A levels were similar, while anti-toxin B levels had a greater range of values. In unadjusted analysis, detection of anti-toxin A antibodies, but not anti-toxin B antibodies, associated with an increased risk of recurrence (OR 2.71 [1.06, 8.37], P = .053). Adjusting for confounders weakened this association. The results were the same in sensitivity analyses. We observed a borderline increased risk of recurrence in patients positive for anti-toxin A antibodies, and sensitivity analyses showed this was not simply a reflection of prior exposure status. Future studies are needed to assess how neutralizing antibody or levels after treatment associate with recurrence.


Assuntos
Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/imunologia , Infecções por Clostridium/imunologia , Adulto , Idoso , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/imunologia , Proteínas de Bactérias/imunologia , Clostridioides difficile , Infecções por Clostridium/diagnóstico , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico , Estudos Prospectivos , Recidiva , Estudos Retrospectivos , Ribotipagem , Fatores de Risco
20.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884780

RESUMO

Cancer is one of the most important global health problems that continues to demand new treatment strategies. Many bacteria that cause persistent infections play a role in carcinogenesis. However, since bacteria are well studied in terms of molecular mechanisms, they have been proposed as an interesting solution to treat cancer. In this review, we present the use of bacteria, and particularly bacterial toxins, in cancer therapy, highlighting the advantages and limitations of bacterial toxins. Proteomics, as one of the omics disciplines, is essential for the study of bacterial toxins. Advances in proteomics have contributed to better characterization of bacterial toxins, but also to the development of anticancer drugs based on bacterial toxins. In addition, we highlight the current state of knowledge in the rapidly developing field of bacterial extracellular vesicles, with a focus on their recent application as immunotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Bactérias/metabolismo , Toxinas Bacterianas/farmacologia , Neoplasias Pulmonares/terapia , Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa