Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Clin Infect Dis ; 79(1): 60-69, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38527855

RESUMO

BACKGROUND: Desirability of outcome ranking (DOOR) is an innovative approach to clinical trial design and analysis that uses an ordinal ranking system to incorporate the overall risks and benefits of a therapeutic intervention into a single measurement. Here we derived and evaluated a disease-specific DOOR endpoint for registrational trials for hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP). METHODS: Through comprehensive examination of data from nearly 4000 participants enrolled in six registrational trials for HABP/VABP submitted to the Food and Drug Administration (FDA) between 2005 and 2022, we derived and applied a HABP/VABP specific endpoint. We estimated the probability that a participant assigned to the study treatment arm would have a more favorable overall DOOR or component outcome than a participant assigned to comparator. RESULTS: DOOR distributions between treatment arms were similar in all trials. DOOR probability estimates ranged from 48.3% to 52.9% and were not statistically different. There were no significant differences between treatment arms in the component analyses. Although infectious complications and serious adverse events occurred more frequently in ventilated participants compared to non-ventilated participants, the types of events were similar. CONCLUSIONS: Through a data-driven approach, we constructed and applied a potential DOOR endpoint for HABP/VABP trials. The inclusion of syndrome-specific events may help to better delineate and evaluate participant experiences and outcomes in future HABP/VABP trials and could help inform data collection and trial design.


Assuntos
Antibacterianos , Pneumonia Bacteriana , Pneumonia Associada à Ventilação Mecânica , Humanos , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Antibacterianos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Masculino , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Pneumonia Associada a Assistência à Saúde/microbiologia , Feminino , Estados Unidos , Ensaios Clínicos como Assunto , Infecção Hospitalar/tratamento farmacológico , Resultado do Tratamento , Pessoa de Meia-Idade , United States Food and Drug Administration , Idoso
2.
Clin Infect Dis ; 78(2): 259-268, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37740559

RESUMO

BACKGROUND: Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are frequently caused by multidrug-resistant organisms. Patient-centered endpoints in clinical trials are needed to develop new antibiotics for HABP/VABP. Desirability of outcome ranking (DOOR) is a paradigm for the design, analysis, and interpretation of clinical trials based on a patient-centered, benefit-risk evaluation. METHODS: A multidisciplinary committee created an infectious diseases DOOR endpoint customized for HABP/VABP, incorporating infectious complications, serious adverse events, and mortality. We applied this to 2 previously completed, large randomized controlled trials for HABP/VABP. ZEPHyR compared vancomycin to linezolid and VITAL compared linezolid to tedizolid. For each trial, we evaluated the DOOR distribution and probability, including DOOR component and partial credit analyses. We also applied DOOR in subgroup analyses. RESULTS: In both trials, the HABP/VABP DOOR demonstrated similar overall clinical outcomes between treatment groups. In ZEPHyR, the probability that a participant treated with linezolid would have a more desirable outcome than a participant treated with vancomycin was 50.2% (95% confidence interval [CI], 45.1%--55.3%). In VITAL, the probability that a participant treated with tedizolid would have a more desirable outcome than a participant treated with linezolid was 48.7% (95% CI, 44.8%-52.6%). The DOOR component analysis revealed that participants treated with tedizolid had a less desirable outcome than those treated with linezolid when considering clinical response alone. However, participants with decreased renal function had improved overall outcomes with tedizolid. CONCLUSIONS: The HABP/VABP DOOR provided more granular information about clinical outcomes than is typically presented in clinical trials. HABP/VABP trials would benefit from prospectively using DOOR.


Assuntos
Pneumonia Associada a Assistência à Saúde , Pneumonia Bacteriana , Pneumonia Associada à Ventilação Mecânica , Humanos , Linezolida/uso terapêutico , Vancomicina/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Antibacterianos/uso terapêutico , Bactérias , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Hospitais , Ventiladores Mecânicos
3.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L141-L149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772909

RESUMO

Neutrophils are the first leukocytes to be recruited to sites of inflammation in response to chemotactic factors released by activated macrophages and pulmonary epithelial and endothelial cells in bacterial pneumonia, a common cause of acute respiratory distress syndrome (ARDS). Although neutrophilic inflammation facilitates the elimination of pathogens, neutrophils also may cause bystander tissue injury. Even though the presence of neutrophils in alveolar spaces is a key feature of acute lung injury and ARDS especially from pneumonia, their contribution to the pathogenesis of lung injury is uncertain. The goal of this study was to elucidate the role of neutrophils in a clinically relevant model of bacterial pneumonia. We investigated the effect of reducing neutrophils in a mouse model of pneumococcal pneumonia treated with antibiotics. Neutrophils were reduced with anti-lymphocyte antigen 6 complex locus G6D (Ly6G) monoclonal antibody 24 h before and immediately preceding infection. Mice were inoculated intranasally with Streptococcus pneumoniae and received ceftriaxone 12 h after bacterial inoculation. Neutrophil reduction in mice treated with ceftriaxone attenuated hypoxemia, alveolar permeability, epithelial injury, pulmonary edema, and inflammatory biomarker release induced by bacterial pneumonia, even though bacterial loads in the distal air spaces of the lung were modestly increased as compared with antibiotic treatment alone. Thus, when appropriate antibiotics are administered, lung injury in the early phase of bacterial pneumonia is mediated in part by neutrophils. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.NEW & NOTEWORTHY Neutrophil accumulation is a key feature of ARDS, but their contribution to the pathogenesis is still uncertain. We investigated the effect of reducing neutrophils in a clinically relevant mouse model of pneumococcal pneumonia treated with antibiotics. When appropriate antibiotics were administered, neutrophil reduction with Ly6G antibody markedly attenuated lung injury and improved oxygenation. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.


Assuntos
Camundongos Endogâmicos C57BL , Neutrófilos , Pneumonia Pneumocócica , Animais , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/patologia , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Streptococcus pneumoniae/patogenicidade , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/microbiologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Lesão Pulmonar/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/imunologia , Masculino
4.
Pediatr Nephrol ; 39(4): 1143-1147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37943374

RESUMO

BACKGROUND: Post infectious glomerulonephritis is the most common glomerulopathy in children, occurring several weeks after nephritogenic streptococcal throat or skin infection. Reports of acute glomerulonephritis (AGN) occurring during active bacterial pneumonia in children are rare. The aim of this study was to evaluate the incidence of AGN concurrent with bacterial pneumonia in children. METHODS: We reviewed records of all children admitted with a diagnosis of pneumonia to the pediatric department in a single tertiary medical center between January 2015 and April 2023. Patients with bacterial pneumonia and concurrent glomerulonephritis were included. RESULTS: Eleven (0.98%) of 1,123 patients with bacterial pneumonia had concurrent AGN. All were males with a median age of 2.7 years (range 1-13). Mean time from bacterial pneumonia onset to acute glomerulonephritis symptoms was 2.7 ± 1.5 days. Five (45%) patients had evidence of pneumococcal infection. Hypertension was found in 10 (91%) patients. Mean trough eGFR was 43.5 ± 21.4 ml/min/1.73 m2 (range 11-73). Ten patients (91%) had low C3 levels. Median urinary protein-to-creatinine ratio was 2.5 mg/mg (IQR 2.15-14.75). All patients fully recovered. Microscopic hematuria was the last finding to normalize after a median of 29.5 days (IQR 17.25-38). CONCLUSION: AGN during bacterial pneumonia may be more frequent than previously recognized. Kidney prognosis was excellent in all patients. Prospective studies are needed to evaluate the impact of this condition.


Assuntos
Glomerulonefrite , Pneumonia Bacteriana , Criança , Masculino , Humanos , Lactente , Pré-Escolar , Adolescente , Feminino , Glomerulonefrite/complicações , Glomerulonefrite/diagnóstico , Glomerulonefrite/epidemiologia , Rim , Doença Aguda , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/epidemiologia , Testes de Função Renal
5.
Environ Res ; 252(Pt 3): 119054, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704007

RESUMO

BACKGROUND: The connections between fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) and daily mortality of viral pneumonia and bacterial pneumonia were unclear. OBJECTIVES: To distinguish the connections between PM2.5 and PM2.5-10 and daily mortality due to viral pneumonia and bacterial pneumonia. METHODS: Using a comprehensive national death registry encompassing all areas of mainland China, we conducted a case-crossover investigation from 2013 to 2019 at an individual level. Residential daily particle concentrations were evaluated using satellite-based models with a spatial resolution of 1 km. To analyze the data, we employed the conditional logistic regression model in conjunction with polynomial distributed lag models. RESULTS: We included 221,507 pneumonia deaths in China. Every interquartile range (IQR) elevation in concentrations of PM2.5 (lag 0-2 d, 37.6 µg/m3) was associated with higher magnitude of mortality for viral pneumonia (3.03%) than bacterial pneumonia (2.14%), whereas the difference was not significant (p-value for difference = 0.38). An IQR increase in concentrations of PM2.5-10 (lag 0-2 d, 28.4 µg/m3) was also linked to higher magnitude of mortality from viral pneumonia (3.06%) compared to bacterial pneumonia (2.31%), whereas the difference was not significant (p-value for difference = 0.52). After controlling for gaseous pollutants, their effects were all stable; however, with mutual adjustment, the associations of PM2.5 remained, and those of PM2.5-10 were no longer statistically significant. Greater magnitude of associations was noted in individuals aged 75 years and above, as well as during the cold season. CONCLUSION: This nationwide study presents compelling evidence that both PM2.5 and PM2.5-10 exposures could increase pneumonia mortality of viral and bacterial causes, highlighting the more robust effects of PM2.5 and somewhat higher sensitivity of viral pneumonia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estudos Cross-Over , Material Particulado , Material Particulado/análise , Material Particulado/efeitos adversos , Humanos , China/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Pneumonia Bacteriana/mortalidade , Pneumonia/mortalidade , Pneumonia/induzido quimicamente , Exposição Ambiental/efeitos adversos , Idoso de 80 Anos ou mais , Tamanho da Partícula , Pneumonia Viral/mortalidade , Adulto
6.
J Infect Chemother ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977072

RESUMO

Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.

7.
Vet Pathol ; : 3009858241235392, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440886

RESUMO

Three cats, aged 2 to 11 years, presented to the University of Minnesota Veterinary Diagnostic Laboratory over a 3-year period following euthanasia or death due to respiratory distress. Thoracic radiographs revealed nodular, soft tissue opacities throughout the lung fields in all cases. On postmortem examination, approximately 60% to 80% of the lung parenchyma were expanded by multifocal to coalescing, well-demarcated, beige, semi-firm nodules. Histologically, large numbers of neutrophils, fewer macrophages, fibrin, and cellular and karyorrhectic debris effaced the pulmonary parenchyma. The inflammatory foci contained aggregates of gram-negative cocci. 16s rRNA Sanger sequencing and whole-genome sequencing identified the bacteria isolated from the lung of all cats under aerobic conditions as a novel Neisseria spp. Based on whole-genome sequence analysis, all 3 sequences shared 92.71% and 92.67% average nucleotide identity with closely related Neisseria animaloris NZ LR134440T and Neisseria animaloris GCA 002108605T, respectively. The in silico DNA-DNA hybridization identity compared to our isolates was 46.6% and 33.8% with strain DSM Neisseria zoodegmatis 21642 and strain DSM 21643, respectively. All 3 sequences have less than 95% average nucleotide identity and less than 70% DNA-DNA hybridization identity, suggesting that the 3 isolates are a novel species of the genus Neisseria. Infection with Neisseria spp. induces an embolic pneumonia in cats that radiographically and pathologically resembles a metastatic neoplastic process and should be considered among the etiologic differential diagnoses in cases of infectious pulmonary disease with a disseminated, nodular lung pattern.

8.
BMC Pulm Med ; 24(1): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627640

RESUMO

BACKGROUND: Bacterial pneumonia can affect all age groups, but people with weakened immune systems, young children, and the elderly are at a higher risk. Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae, and Pseudomonas aeruginosa are the most common causative agents of pneumonia, and they have developed high MDR in recent decades in Ethiopia. This systematic review and meta-analysis aimed to determine the pooled prevalence of bacterial pneumonia and multidrug resistance in Ethiopia. METHODS: The articles were searched extensively in the electronic databases and grey literature using entry terms or phrases. Studies meeting the eligibility criteria were extracted in MS Excel and exported for statistical analysis into STATA version 14 software. The pooled prevalence of bacterial pneumonia and multidrug resistance were calculated using a random-effects model. Heterogeneity was assessed by using the I2 value. Publication bias was assessed using a funnel plot and Egger's test. A sensitivity analysis was done to assess the impact of a single study on the pooled effect size. RESULT: Of the 651 studies identified, 87 were eligible for qualitative analysis, of which 11 were included in the meta-analysis consisting of 1154 isolates. The individual studies reported prevalence of bacterial pneumonia ranging from 6.19 to 46.3%. In this systematic review and metanalysis, the pooled prevalence of bacterial pneumonia in Ethiopia was 37.17% (95% CI 25.72-46.62), with substantial heterogeneity (I2 = 98.4%, p < 0.001) across the studies. The pooled prevalence of multidrug resistance in bacteria isolated from patients with pneumonia in Ethiopia was 67.73% (95% CI: 57.05-78.40). The most commonly isolated bacteria was Klebsiella pneumoniae, with pooled prevalence of 21.97% (95% CI 16.11-27.83), followed by Streptococcus pneumoniae, with pooled prevalence of 17.02% (95% CI 9.19-24.86), respectively. CONCLUSION: The pooled prevalence of bacterial isolates from bacterial pneumonia and their multidrug resistance were high among Ethiopian population. The initial empirical treatment of these patients remains challenging because of the strikingly high prevalence of antimicrobial resistance.

9.
BMC Health Serv Res ; 24(1): 389, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549158

RESUMO

BACKGROUND: Resistant bacterial infections, particularly those caused by gram-negative pathogens, are associated with high mortality and economic burdens. Ceftolozane/tazobactam demonstrated efficacy comparable to meropenem in patients with ventilated hospital-acquired bacterial pneumonia in the ASPECT-NP study. One cost-effectiveness analysis in the United States revealed that ceftolozane/tazobactam was cost effective, but no Japanese studies have been conducted. Therefore, the objective of this study was to assess the cost-effectiveness of ceftolozane/tazobactam compared to meropenem for patients with ventilated hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia from a health care payer perspective. METHODS: A hybrid decision-tree Markov decision-analytic model with a 5-year time horizon were developed to estimate costs and quality-adjusted life-years and to calculate the incremental cost-effectiveness ratio associated with ceftolozane/tazobactam and meropenem in the treatment of patients with ventilated hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia. Clinical outcomes were based on the ASPECT-NP study, costs were based on the national fee schedule of 2022, and utilities were based on published data. One-way sensitivity analysis and probabilistic sensitivity analysis were also conducted to assess the robustness of our modeled estimates. RESULTS: According to our base-case analysis, compared with meropenem, ceftolozane/tazobactam increased the total costs by 424,731.22 yen (£2,626.96) and increased the quality-adjusted life-years by 0.17, resulting in an incremental cost-effectiveness ratio of 2,548,738 yen (£15,763.94) per quality-adjusted life-year gained for ceftolozane/tazobactam compared with meropenem. One-way sensitivity analysis showed that although the incremental cost-effectiveness ratio remained below 5,000,000 yen (£30,925) for most of the parameters, the incremental net monetary benefit may have been less than 0 depending on the treatment efficacy outcome, especially the cure rate and mortality rate for MEPM and mortality rate for CTZ/TAZ. 53.4% of the PSA simulations demonstrated that CTZ/TAZ was more cost-effective than MEPM was. CONCLUSION: Although incremental cost-effectiveness ratio was below ï¿¥5,000,000 in base-case analysis, whether ceftolozane/tazobactam is a cost-effective alternative to meropenem for ventilated hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia in Japan remains uncertain. Future research should examine the unobserved heterogeneity across patient subgroups and decision-making settings, to characterise decision uncertainty and its consequences so as to assess whether additional research is required.


Assuntos
Antibacterianos , Cefalosporinas , Pneumonia Bacteriana , Humanos , Estados Unidos , Antibacterianos/uso terapêutico , Meropeném/uso terapêutico , Análise de Custo-Efetividade , Japão/epidemiologia , Tazobactam/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Hospitais
10.
Emerg Radiol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834862

RESUMO

Pulmonary infections contribute substantially to emergency department (ED) visits, posing a considerable health burden. Lower respiratory tract infections are prevalent, particularly among the elderly, constituting a significant percentage of infectious disease-related ED visits. Timely recognition and treatment are crucial to mitigate morbidity and mortality. Imaging studies, primarily chest radiographs and less frequently CT chests, play a pivotal role in diagnosis. This article aims to elucidate the imaging patterns of both common and rare pulmonary infections (bacterial and viral) in the post COVID-19 era, emphasizing the importance of recognizing distinct radiological manifestations. The integration of clinical and microbiological evidence aids in achieving accurate diagnoses, and guiding optimal therapeutic interventions. Despite potential overlapping manifestations, a nuanced understanding of radiological patterns, coupled with comprehensive clinical and microbiological information, enhances diagnostic precision in majority cases.

11.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L584-L595, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880658

RESUMO

Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs). LncRNAs are extensively expressed in various immune cells. The lncRNAs have been reported to be involved in diverse biological processes, including the regulation of gene expression, dosage compensation, and genomic imprinting. However, very little research has been conducted to explore how they alter innate immune responses during host-pathogen interactions. In this study, we found that a lncRNA, named long noncoding RNA, embryonic stem cells expressed 1 (Lncenc1), was strikingly increased in mouse lungs after gram-negative (G-) bacterial infection or exposure to lipopolysaccharides (LPS). Interestingly, our data indicated that Lncenc1 was upregulated in macrophages but not in primary epithelial cells (PECs) or polymorphonuclear leukocytes (PMN). The upregulation was also observed in human THP-1 and U937 macrophages. Besides, Lncenc1 was highly induced during ATP-induced inflammasome activation. Functionally, Lncenc1 showed proinflammatory effects in macrophages as demonstrated by increased expressions of cytokine and chemokines, as well as enhanced NF-κB promoter activity. Overexpression of Lncenc1 promoted the releases of IL-1ß and IL-18, and Caspase-1 activity in macrophages, suggesting a role in inflammasome activation. Consistently, knockdown of Lncenc1 inhibited inflammasome activation in LPS-treated macrophages. Moreover, knockdown of Lncenc1 using antisense oligo (ASO)-loaded exosomes (EXO) attenuated LPS-induced lung inflammation in mice. Similarly, Lncenc1 deficiency protects mice from bacteria-induced lung injury and inflammasome activation. Taken together, our work identified Lncenc1 as a modulator of inflammasome activation in macrophages during bacterial infection. Our study suggested that Lncenc1 could serve as a therapeutic target for lung inflammation and injury.


Assuntos
Pneumonia , RNA Longo não Codificante , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Pneumonia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ativação de Macrófagos , Mamíferos/genética , Mamíferos/metabolismo
12.
Antimicrob Agents Chemother ; 67(4): e0221321, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36946741

RESUMO

Omadacycline, a novel aminomethylcycline with in vitro activity against Gram-positive and -negative organisms, including Streptococcus pneumoniae and Haemophilus influenzae, is approved in the United States to treat patients with community-acquired bacterial pneumonia (CABP). Using nonclinical pharmacokinetic-pharmacodynamic (PK-PD) targets for efficacy and in vitro surveillance data for omadacycline against S. pneumoniae and H. influenzae, and a population pharmacokinetic model, PK-PD target attainment analyses were undertaken using total-drug epithelial lining fluid (ELF) and free-drug plasma exposures to evaluate omadacycline 100 mg intravenously (i.v.) every 12 h or 200 mg i.v. every 24 h (q24h) on day 1, followed by 100 mg i.v. q24h on day 2 and 300 mg orally q24h on days 3 to 5 for patients with CABP. Percent probabilities of PK-PD target attainment on days 1 and 2 by MIC were assessed using the following four approaches for selecting PK-PD targets: (i) median, (ii) second highest, (iii) highest, and (iv) randomly assigned total-drug ELF and free-drug plasma ratio of the area under the concentration-time curve to the MIC (AUC/MIC ratio) targets associated with a 1-log10 CFU reduction from baseline. Percent probabilities of PK-PD target attainment based on total-drug ELF AUC/MIC ratio targets on days 1 and 2 were ≥91.1% for S. pneumoniae for all approaches but the highest target and ≥99.2% for H. influenzae for all approaches at MIC90s (0.12 and 1 µg/mL for S. pneumoniae and H. influenzae, respectively). Lower percent probabilities of PK-PD target attainment based on free-drug plasma AUC/MIC ratio targets were observed for randomly assigned and the highest free-drug plasma targets for S. pneumoniae and for all targets for H. influenzae. These data provided support for approved omadacycline dosing regimens to treat patients with CABP and decisions for the interpretive criteria for the in vitro susceptibility testing of omadacycline against these pathogens.


Assuntos
Pneumonia Bacteriana , Streptococcus pneumoniae , Humanos , Antibacterianos/farmacologia , Bactérias , Haemophilus influenzae , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/tratamento farmacológico
13.
Cytokine ; 161: 156052, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375397

RESUMO

BACKGROUND: IL-38, a recently discovered cytokine of IL-1 family, exerts immunoregulatory activities in multi-type inflammatory diseases. However, its expression level and underlying clinical importance for IL-38 in respiratory bacterial infections remain unknown. METHODS: Thirty-five patients with bacterial pneumonia and twenty age- and gender- matched healthy individuals were enrolled in the study to determine serum IL-38 concentrations by ELISA. Then, the correlation between serum IL-38 levels and clinical features were analyzed and ROC curve was used to evaluate the potential diagnostic value for bacterial infections. In vitro, LPS-stimulated human respiratory epithelial cell model was employed to explore immunomodulatory mechanism of IL-38 in pulmonary infections. RESULTS: Elevated serum levels of IL-38 were determined in patients with bacterial pneumonia when compared with healthy controls. In addition, serum IL-38 levels were negatively correlated with clinical inflammation parameters, including WBC count, CRP, PCT and proinflammatory IL-6 and IL-8. In vitro, we demonstrated that recombinant IL-38 was able to remarkably inhibit expression of proinflammatory IL-6, IL-8, IL-1ß and TNF-α as well as adhesion molecule ICAM-1, which were partially mediated by attenuated activation of STAT3 and NF-κB signal cascades in BEAS-2B cells. Furthermore, we identified the diagnostic efficiency of IL-38 in discriminating patients with bacterial pneumonia from healthy individuals. CONCLUSIONS: Our study indicates higher serum IL-38 levels in patients with bacterial pneumonia are involved in anti-inflammatory activities in respiratory infections revealing a critical role of IL-38 in attenuating excessive pulmonary inflammation against exogenous pathogens. More importantly, IL-38 exhibited a potential novel biomarker for bacterial pneumonia. Thus, our data may provide useful insights for both clinical and basic research for bacterial pneumonia diagnosis.


Assuntos
Pneumonia Bacteriana , Pneumonia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas , Fator de Necrose Tumoral alfa , Interleucinas
14.
Vet Res ; 54(1): 76, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705063

RESUMO

Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14- counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Ascomicetos , Infecções por Mycoplasma , Pleuropneumonia , Pneumonia , Doenças dos Suínos , Animais , Camundongos , Suínos , Neutrófilos , Pneumonia/veterinária , Pleuropneumonia/veterinária , Infecções por Mycoplasma/veterinária , Infecções por Actinobacillus/veterinária , Pulmão
15.
Aging Clin Exp Res ; 35(11): 2657-2665, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676430

RESUMO

BACKGROUND AND AIMS: Aspiration pneumonia is generally associated with deterioration of skeletal muscle mass, which is usually evaluated by the erector spinae muscle cross-sectional area (ESMCSA); however, no report has assessed ESMCSA in patients with aspiration pneumonia. Furthermore, erector spinae muscle thickness (ESMT) was developed to be easier to measure than ESMCSA. Therefore, this study investigated the relationship between ESMT and ESMCSA in aspiration pneumonia patients compared to bacterial pneumonia patients. METHODS: We retrospectively collected data for 164 patients with aspiration pneumonia and 480 patients with bacterial pneumonia who were hospitalized at Fukujuji Hospital between September 2018 and May 2022. We assessed the correlations between ESMCSA and ESMT and compared the data between the two groups. RESULTS: ESMT had a strong, proportional relationship with ESMCSA in all patients (r = 0.908, p < 0.001) and those with aspiration pneumonia (r = 0.896, p < 0.001). ESMCSA (median 671.8 mm2 [range 164.0-1636.7] vs. median 1057.0 mm2 [range 161.3-2412.5], p < 0.001) and ESMT (median 17.1 mm [range 6.95-34.4] vs. median 23.8 mm [range 6.95-43.7], p < 0.001) were significantly lower in patients with aspiration pneumonia. A multivariate analysis of aspiration pneumonia diagnosis showed significant independent differences from bacterial pneumonia in ESMCSA (odds ratio 0.998 [95% CI: 0.996-0.999], p = 0.001) and ESMT (odds ratio 0.90 [95% CI: 0.84-0.96], p = 0.002). CONCLUSION: This study demonstrates a strong correlation between ESMCSA and ESMT. ESMT can be more easily used to evaluate skeletal muscle mass and can help in diagnosing aspiration pneumonia.


Assuntos
Pneumonia Aspirativa , Pneumonia Bacteriana , Humanos , Músculo Esquelético , Estudos Retrospectivos
16.
Sensors (Basel) ; 23(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177662

RESUMO

Rapid identification of COVID-19 can assist in making decisions for effective treatment and epidemic prevention. The PCR-based test is expert-dependent, is time-consuming, and has limited sensitivity. By inspecting Chest R-ray (CXR) images, COVID-19, pneumonia, and other lung infections can be detected in real time. The current, state-of-the-art literature suggests that deep learning (DL) is highly advantageous in automatic disease classification utilizing the CXR images. The goal of this study is to develop models by employing DL models for identifying COVID-19 and other lung disorders more efficiently. For this study, a dataset of 18,564 CXR images with seven disease categories was created from multiple publicly available sources. Four DL architectures including the proposed CNN model and pretrained VGG-16, VGG-19, and Inception-v3 models were applied to identify healthy and six lung diseases (fibrosis, lung opacity, viral pneumonia, bacterial pneumonia, COVID-19, and tuberculosis). Accuracy, precision, recall, f1 score, area under the curve (AUC), and testing time were used to evaluate the performance of these four models. The results demonstrated that the proposed CNN model outperformed all other DL models employed for a seven-class classification with an accuracy of 93.15% and average values for precision, recall, f1-score, and AUC of 0.9343, 0.9443, 0.9386, and 0.9939. The CNN model equally performed well when other multiclass classifications including normal and COVID-19 as the common classes were considered, yielding accuracy values of 98%, 97.49%, 97.81%, 96%, and 96.75% for two, three, four, five, and six classes, respectively. The proposed model can also identify COVID-19 with shorter training and testing times compared to other transfer learning models.


Assuntos
COVID-19 , Pneumonia Viral , Humanos , COVID-19/diagnóstico , Pneumonia Viral/diagnóstico por imagem , Área Sob a Curva , Tomada de Decisões , Aprendizado de Máquina
17.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958922

RESUMO

Critically ill patients with Corona Virus Disease 2019 (COVID-19) often develop secondary bacterial infections that pose a significant threat to patient life safety, making the development of drugs to prevent bacterial infections in the lungs critical to clinical care. Naringin (NAR) is one of the significant natural flavonoids rich in Pummelo Peel (Hua Ju Hong), with anti-inflammatory, antimicrobial, and antioxidant activities, and is commonly used in treating respiratory tract infectious diseases. In this study, the in vitro and in vivo findings revealed that, after Klebsiella pneumoniae (Kpn) infection, NAR inhibited overactivation of the nuclear factor kappa-B(NF-κB) signaling pathway in alveolar macrophages of mice, reduced neutrophil (NEs) recruitment, and lowered the induced production of proinflammatory markers, such as Interleukin-6(IL-6) and tumor necrosis factor α(TNF-α). Thus, it suppressed excessive immune responses in the lungs, as well as attenuated the induced pulmonary fibrosis and inflammatory infiltrates. These results suggest that NAR has a preventive effect against Kpn in mice. In addition, the study evaluated NAR's potential toxicity, demonstrating that NAR is safe at effective doses. These results suggested that NAR effectively reduces excessive inflammatory damage in the lungs induced by Kpn and enhances the body's ability to clear bacteria. Therefore, NAR may be an effective and safe healthcare drug for preventing and caring for bacterial pneumonia.


Assuntos
Klebsiella pneumoniae , Pneumonia Bacteriana , Camundongos , Humanos , Animais , Klebsiella pneumoniae/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Pneumonia Bacteriana/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
18.
Mol Biol (Mosk) ; 57(3): 539-545, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37326059

RESUMO

A diagnostic system based on recombinase polymerase amplification (RPA) has been developed to identify six bacterial pathogens of human pneumonia. Species-specific primers have been designed and optimized to conduct a multiplex reaction in one common volume. Labeled primers were used for reliable discrimination of amplification products that are similar in size. Identification of the pathogen was carried out by visual analysis of an electrophoregram. The analytical sensitivity of the developed multiplex RPA was 10^(2)-10^(3) copies of DNA. The specificity of the system was determined by the absence of cross-amplification of the studied DNA samples of pneumonia pathogens for each pair of primers, as well as for the DNA of Mycobacterium tuberculosis H37rv, and amounted to 100%. The execution time of the analysis is less than an 1 h, including the electrophoretic reaction control. The test system can be used in specialized clinical laboratories for rapid analysis of samples from patients with suspected pneumonia.


Assuntos
Pneumonia Bacteriana , Recombinases , Humanos , Sensibilidade e Especificidade , Primers do DNA/genética , DNA
19.
J Infect Dis ; 225(9): 1592-1600, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792153

RESUMO

BACKGROUND: Bacterial pneumonia is a leading reason for hospitalization among people with HIV (PWH); however, evidence regarding its drivers in the era of potent antiretroviral therapy is limited. METHODS: We assessed risk factors for bacterial pneumonia in the Swiss HIV Cohort Study using marginal models. We further assessed the relationship between risk factors and changes in bacterial pneumonia incidence using mediation analysis. RESULTS: We included 12927 PWH with follow-ups between 2008 and 2018. These patients had 985 bacterial pneumonia events during a follow-up of 100779 person-years. Bacterial pneumonia incidence significantly decreased from 13.2 cases/1000 person-years in 2008 to 6.8 cases/1000 person-years in 2018. Older age, lower education level, intravenous drug use, smoking, lower CD4-cell count, higher HIV load, and prior pneumonia were significantly associated with higher bacterial pneumonia incidence. Notably, CD4 cell counts 350-499 cells/µL were significantly associated with an increased risk compared to CD4 ≥ 500 cells/µL (adjusted hazard ratio, 1.39; 95% confidence interval, 1.01-1.89). Decreasing incidence over the last decade can be explained by increased CD4-cell counts and viral suppression and decreased smoking frequency. CONCLUSIONS: Improvements in cascade of care of HIV and decrease in smoking may have mediated a substantial decrease in bacterial pneumonia incidence.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Pneumonia Bacteriana , Fármacos Anti-HIV/uso terapêutico , Contagem de Linfócito CD4 , Estudos de Coortes , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Humanos , Incidência , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/epidemiologia , Fatores de Risco , Suíça/epidemiologia , Carga Viral
20.
Pol J Radiol ; 88: e483-e493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020497

RESUMO

Purpose: X-ray images are viewed as a vital component in emergency diagnosis. They are often used by deep learning applications for disease prediction, especially for thoracic pathologies. Pneumonia, a fatal thoracic disease induced by bacteria or viruses, generates a pleural effusion where fluids are accumulated inside lungs, leading to breathing difficulty. The utilization of X-ray imaging for pneumonia detection offers several advantages over other modalities such as computed tomography scans or magnetic resonance imaging. X-rays provide a cost-effective and easily accessible method for screening and diagnosing pneumonia, allowing for quicker assessment and timely intervention. However, interpretation of chest X-ray images depends on the radiologist's competency. Within this study, we aim to suggest new elements leading to good interpretation of chest X-ray images for pneumonia detection, especially for distinguishing between viral and bacterial pneumonia. Material and methods: We proposed an interpretation model based on convolutional neural networks (CNNs) and extreme gradient boosting (XGboost) for pneumonia classification. The experimental study is processed through various scenarios, using Python as a programming language and a public database obtained from Guangzhou Women and Children's Medical Centre. Results: The results demonstrate an acceptable accuracy of 87% within a mere 7 seconds, thereby endorsing its effectiveness compared to similar existing works. Conclusions: Our study provides a model based on CNN and XGboost to classify images of viral and bacterial pneumonia. The work is a challenging task due to the lack of appropriate data. The experimental process allows a better accuracy of 87%, a specificity of 89%, and a sensitivity of 85%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa