Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Mol Ecol ; 33(3): e17226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018898

RESUMO

Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.


Assuntos
Coinfecção , Vírus de Insetos , Vírus de RNA , Tephritidae , Humanos , Animais , Insetos
2.
Mol Ecol ; 33(17): e17485, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39080979

RESUMO

Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.


Assuntos
Especificidade de Hospedeiro , Simbiose , Tephritidae , Vespas , Animais , Vespas/virologia , Vespas/genética , Simbiose/genética , Especificidade de Hospedeiro/genética , Tephritidae/virologia , Tephritidae/parasitologia , Tephritidae/genética , Ceratitis capitata/virologia , Ceratitis capitata/genética , Ceratitis capitata/parasitologia , Interações Hospedeiro-Parasita/genética , Controle Biológico de Vetores
3.
Insect Mol Biol ; 33(3): 185-194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38251981

RESUMO

The hAT family transposable element, hopper, was originally discovered as a defective 3120-bp full-length element in a wild-type strain of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and subsequently a functional 3131-bp element, hopperBdwe, was isolated from a white eye mutant strain. The latter study showed that closely related elements exist in melonfly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), a closely related subgenus, suggesting that hopper could have a widespread presence in the Bactrocera genus. To further understand the distribution of hopper within and beyond the B. dorsalis species complex, primer pairs from hopperBdwe and its adjacent genomic insertion site were used to survey the presence and relatedness of hopper in five species within the complex and four species beyond the complex. Based on sequence identity of a 1.94 kb internal nucleotide sequence, the closest relationships were with mutated elements from B. dorsalis s.s. and species synonymized with B. dorsalis including B. papayae, B. philippinensis and B. invadens, ranging in identity between 88.4% and 99.5%. Notably, Bactrocera carambolae (Drew & Hancock) (Diptera: Tephritidae), which is most closely related to B. dorsalis beyond the synonymized species, shared hopper identities of 97.3%-99.5%. Beyond the B. dorsalis complex, Z. cucurbitae, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and Bactrocera zonata (Saunders) (Diptera: Tephritidae) shared identities of 83.1%-97.1%, while hopper was absent from the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) strain tested. While the functional autonomous hopperBdwe element was not detected in these species, another closely related hopper element isolated from a B. dorsalis genetic sexing strain has an uninterrupted transposase open reading frame. The discontinuous presence of hopper in the Bactrocera genus has implications for its use for genomic manipulation and understanding the phylogenetic relationship of these species.


Assuntos
Elementos de DNA Transponíveis , Filogenia , Tephritidae , Animais , Tephritidae/genética , Sequência de Bases , Dados de Sequência Molecular
4.
Insect Mol Biol ; 33(2): 136-146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37877756

RESUMO

The key phenotype white eye (white) has been used for decades to selectively remove females before release in sterile insect technique programs and as an effective screening marker in genetic engineering. Bactrocera dorsalis is a representative tephritid pest causing damage to more than 150 fruit crops. Yet, the function of white in important biological processes remains unclear in B. dorsalis. In this study, the impacts of the white gene on electrophysiology and reproductive behaviour in B. dorsalis were tested. The results indicated that knocking out Bdwhite disrupted eye pigmentation in adults, consistent with previous reports. Bdwhite did not affect the antennal electrophysiology response to 63 chemical components with various structures. However, reproductive behaviours in both males and females were significantly reduced in Bdwhite-/- . Both pre-copulatory and copulation behaviours were significantly reduced in Bdwhite-/- , and the effect was male-specific. Mutant females significantly delayed their oviposition towards γ-octalactone, and the peak of oviposition behaviour towards orange juice was lost. These results show that Bdwhite might not be an ideal screening marker in functional gene research aiming to identify molecular targets for behaviour-modifying chemicals. Instead, owing to its strong effect on B. dorsalis sexual behaviours, the downstream genes regulated by Bdwhite or the genes from white-linked areas could be alternate molecular targets that promote the development of better behavioural modifying chemical-based pest management techniques.


Assuntos
Oviposição , Tephritidae , Feminino , Animais , Masculino , Eletrofisiologia
5.
Insect Mol Biol ; 33(3): 283-292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411032

RESUMO

Although the study of many genes and their protein products is limited by the availability of high-quality antibodies, this problem could be solved by fusing a tag/reporter to an endogenous gene using a gene-editing approach. The type II bacterial CRISPR/Cas system has been demonstrated to be an efficient gene-targeting technology for many insects, including the oriental fruit fly Bactrocera dorsalis. However, knocking in, an important editing method of the CRISPR/Cas9 system, has lagged in its application in insects. Here, we describe a highly efficient homology-directed genome editing system for B. dorsalis that incorporates coinjection of embryos with Cas9 protein, guide RNA and a short single-stranded oligodeoxynucleotide donor. This one-step procedure generates flies carrying V5 tag (42 bp) in the BdorTRH gene. In insects, as in other invertebrates and in vertebrates, the neuronal tryptophan hydroxylase (TRH) gene encodes the rate-limiting enzyme for serotonin biosynthesis in the central nervous system. Using V5 monoclonal antibody, the distribution of TRH in B. dorsalis at different developmental stages was uncovered. Our results will facilitate the generation of insects carrying precise DNA inserts in endogenous genes and will lay foundation for the investigation of the neural mechanisms underlying the serotonin-mediated behaviour of B. dorsalis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Tephritidae , Animais , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/crescimento & desenvolvimento , Edição de Genes/métodos , Técnicas de Introdução de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
6.
Microb Ecol ; 87(1): 46, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407587

RESUMO

Bacterial symbionts are crucial to the biology of Bactrocera dorsalis. With larval diet (fruit host) being a key factor that determines microbiome composition and with B. dorsalis using more than 400 fruits as hosts, it is unclear if certain bacterial symbionts are preserved and are passed on to B. dorsalis progenies despite changes in larval diet. Here, we conducted a fly rearing experiment to characterize diet-induced changes in the microbiome of female B. dorsalis. In order to explicitly investigate the impacts of larval diet on the microbiome, including potential stable bacterial constituents of B. dorsalis, we performed 16S rRNA sequencing on the gut tissues of teneral female flies reared from four different host fruits (guava, mango, papaya, and rose apple) infested using a single cohort of wild B. dorsalis that emerged from tropical almond (mother flies). Although B. dorsalis-associated microbiota were predominantly shaped by the larval diet, some major bacterial species from the mother flies were retained in progenies raised on different larval diets. With some variation, Klebsiella (ASV 1 and 2), Morganella (ASV 3), and Providencia (ASV 6) were the major bacterial symbionts that were stable and made up 0.1-80% of the gut and ovipositor microbiome of female teneral flies reared on different host fruits. Our results suggest that certain groups of bacteria are stably associated with female B. dorsalis across larval diets. These findings provide a basis for unexplored research on symbiotic bacterial function in B. dorsalis and may aid in the development of novel management techniques against this devastating pest of horticultural importance.


Assuntos
Frutas , Tephritidae , Humanos , Feminino , Animais , Larva , RNA Ribossômico 16S/genética
7.
J Chem Ecol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976098

RESUMO

Biotic and abiotic factors influence how insects respond to stimuli. This can make it challenging to interpret captures in traps used to monitor pest abundance in management programmes. To address this, the lure response of three pest fruit flies (Diptera: Tephritidae) was evaluated in a semi-field setting with respect to several physiological and environmental factors. Using standardised methods with known fly numbers in field cages, the response to Biolure (food-based lure) was evaluated for Ceratitis capitata, Ceratitis cosyra and Bactrocera dorsalis. Response to the male lures was tested: E.G.O PheroLure for C. capitata and C. cosyra, Trimedlure for C. capitata, and methyl eugenol for B. dorsalis. The physiological variables evaluated were fly age, sex, weight, and total body nutritional composition. The environmental effects of temperature, relative humidity and light intensity were also assessed. Protein-deprived adults responded more strongly to Biolure. The response to Biolure was not sex-specific. Fly age influenced the response of all species to all tested lures. However, this effect was species and lure specific. Temperature was the most influential environmental factor, with response generally increasing with temperature. Lower thresholds for lure response, despite the proximity of responsive flies, range from 12.21 to 22.95 °C depending on the species and lure tested. These results indicate that trapping systems and management activity thresholds must take physiological and environmental variation into account to increase their accuracy.

8.
J Chem Ecol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740727

RESUMO

The Oriental fruit fly, Bactrocera dorsalis, is a significant pest that damages a variety of fruit crops. The effectiveness of chemical pesticides against such pests is limited, raising concerns about pesticide residues and resistance. Proteins naturally attract B. dorsalis and have led to the development of a management strategy known as protein bait attractant technology (BAT). Although the attraction of protein sources to B. dorsalis is well-documented, the biologically active components within these sources are not fully understood. This study employed analytical chemistry, behavioral tests, and electrophysiological techniques to investigate the behaviorally active components of beer yeast protein powder (BYPD), aiming to provide a basis for improving and developing protein baits. An olfactory trap assay confirmed the attractiveness of BYPD, and five components with high abundance were identified from its headspace volatiles using GC-MS. These components included ethanol, isoamyl alcohol, ethyl decanoate, benzaldehyde, and phenylethyl alcohol. Mixtures of these five components demonstrated significant attraction to B. dorsalis adults, with benzaldehyde identified as a potential key component. The attractiveness of benzaldehyde required a relatively large dose, and it was most attractive to adults that had been starved from dusk until the following morning. Attraction of adult flies to benzaldehyde appeared mainly mediated by inputs from olfactory receptors. While EAG data supports that ionotropic receptors could influence the detection of benzaldehyde in female adults, they did not affect female behavior towards benzaldehyde. These findings indicate that benzaldehyde is an important behaviorally active component in BYPD and offer insights for developing novel protein lures to control B. dorsalis in an environmentally friendly manner.

9.
Pestic Biochem Physiol ; 204: 106084, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277397

RESUMO

Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to ß-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with ß-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to ß-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to ß-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to ß-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.


Assuntos
Resistência a Inseticidas , Íntrons , Piretrinas , Tephritidae , Canais de Sódio Disparados por Voltagem , Animais , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Piretrinas/farmacologia , Piretrinas/toxicidade , Resistência a Inseticidas/genética , Tephritidae/genética , Tephritidae/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/toxicidade , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582589

RESUMO

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Assuntos
Dopamina , Drosophila melanogaster , Tephritidae , Animais , Dopamina/metabolismo , Dopamina/farmacologia , Drosophila melanogaster/metabolismo , Memória , Antagonistas de Dopamina/farmacologia
11.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38913610

RESUMO

Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B. neohumeralis, it peaks earlier in the day. To ascertain whether differences in pheromone composition may also contribute to premating isolation between them, this study used solid-phase microextraction and gas chromatography-mass spectrometry to characterize the rectal gland volatiles of a recently collected and a more domesticated strain of each species. These glands are typical production sites and reservoirs of pheromones in bactrocerans. A total of 120 peaks were detected and 50 were identified. Differences were found in the composition of the rectal gland emissions between the sexes, species, and recently collected versus domesticated strains of each species. The compositional variation included several presence/absence and many quantitative differences. Species and strain differences in males included several relatively small alcohols, esters, and aliphatic amides. Species and strain differences in females also included some of the amides but additionally involved many fatty acid esters and 3 spiroacetals. While the strain differences indicate there is also heritable variation in rectal gland emissions within each species, the species differences imply that compositional differences in pheromones emitted from rectal glands could contribute to the premating isolation between B. tryoni and B. neohumeralis. The changes during domestication could also have significant implications for the efficacy of Sterile Insect Technique control programs.


Assuntos
Feromônios , Tephritidae , Animais , Masculino , Feminino , Tephritidae/genética , Tephritidae/fisiologia , Tephritidae/metabolismo , Simpatria , Cromatografia Gasosa-Espectrometria de Massas , Especificidade da Espécie , Isolamento Reprodutivo , Comportamento Sexual Animal , Microextração em Fase Sólida
12.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491950

RESUMO

The Sudano-Sahelian and the high Guinea savannahs agroecological zones of Cameroon are suitable for the full development of tree crops, including mango. Unfortunately, fresh fruits exported to local and international markets are frequently rejected due to the presence of fruit fly larvae (Diptera: Tephritidae), resulting in drastic income losses and overuse of chemical control products. To promote sustainable management strategies, a 2-yr study (2020-2021) was conducted in 4 and 3 mixed orchards, respectively. Attacked mangoes showing signs of fruit fly damage were collected and taken to the laboratory to rear and identify fruit flies. Repeated grafting and agroclimatic differences were responsible for dissimilarities between the 2 zones, with 18 and 16 cultivars, respectively. From 2,857 attacked mangoes, 26,707 fruit flies belonging to 4 species were identified: Bactrocera dorsalis, Ceratitis cosyra, Ceratitis fasciventris, and Ceratitis anonae. Climate change was the factor determining the distribution of the 2 most important mango fruit flies: B. dorsalis was a wetland species (dominance/occurrence > 70%), while C. cosyra was a dry-land species (dominance/occurrence > 75%). Both species were responsible for high levels of infestations. Bactrocera dorsalis preferred 3 mango cultivars, namely Palmer and Smith in Zone 1, and Ifack 1 in Zone 2 (infestation > 20 individuals/100 g of mango). The host-plant spectrum of C. cosyra was modified by alternative host plants. Both C. fasciventris and C. anonae were rare. Findings from this study could guide researchers in the development of monitoring tools for fruit fly populations and, subsequently, in reducing the damage they cause to mangoes.


Assuntos
Anacardiaceae , Mangifera , Tephritidae , Humanos , Animais , Camarões , Drosophila , Larva
13.
RNA Biol ; 20(1): 164-176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092804

RESUMO

In female animals, metabolic homoeostasis and reproductive fitness are critical to population expansion. The trade-off between lipid storage and reproduction inevitably occurs. However, most studies have focused on the complex network of relationships between reproductive and metabolic physiology at the transcriptional level. In this study, we identified a microRNA, miR-2b-2-5p, in a highly invasive quarantine pest, Bactrocera dorsalis. Knockdown of miR-2b-2-5p by antagomiR microinjection impaired ovarian development, reduced fecundity, and decreased triglyceride (TAG) storage in the fat body, whereas overexpression of miR-2b-2-5p by injection of its mimic caused reproductive defects similar to knockdown but increased TAG. Bioinformatics analysis and dual luciferase assay indicated that cyclic AMP response element (CRE)-binding protein (CREB) was the target gene of miR-2b-2-5p. RNAi-mediated knockdown of CREB led to excessive lipid storage and reproductive defects. Further starvation treatment revealed that miR-2b-2-5p functions by fine-tuning CREB expression in response to dietary stimuli. These results suggest that miR-2b-2-5p acts as a monitor to regulate CREB mRNA levels in the fat body, maintaining lipid homoeostasis and keeping the reproductive system on track. Thus, our study not only provides new insights into the interaction between metabolism and reproduction at the posttranscriptional level in B. dorsalis, but also providing a potential eco-friendly control strategy (RNAi-based biopesticides targeting essential miRNAs) for this notorious agricultural pest.


Assuntos
Metabolismo dos Lipídeos , MicroRNAs , Animais , Feminino , MicroRNAs/genética , Reprodução , Triglicerídeos
14.
Arch Insect Biochem Physiol ; 113(4): e22024, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211656

RESUMO

The Oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly invasive pest of quarantine importance affecting the global fruit trade. In managing B. dorsalis, methods like cultural, biological, chemical, sterile insect technique (SIT), and semiochemical-mediated attract-and-kill are in use with varying success. The SIT approach is the method of choice for a chemical-free, long-term suppression of B. dorsalis, followed in many countries across the globe. The nonspecific mutations caused by irradiation affect the overall fitness of flies, thus requiring a more precise method for a heritable, fitness-not-compromising approach. In this regard, CRISPR/Cas9-mediated genome editing enables the creation of mutations at the precise genomic location/s through RNA-guided dsDNA cleavage. Of late, DNA-free editing employing ribonucleoprotein complex (RNP) is preferred to validate the target genes at G0 stage embryos in insects. It requires characterizing genomic edits from adults after completing their life cycle, which may entail a few days to months, depending on longevity. Additionally, edit characterization is required from each individual, as edits are unique. Therefore, all RNP-microinjected individuals must be maintained until the end of their life cycle, irrespective of editing. To overcome this impediment, we predetermine the genomic edits from the shed tissues, such as pupal cases, to maintain only edited individuals. In this study, we have shown the utility of pupal cases from five males and females of B. dorsalis to predetermine the genomic edits, which corroborated the edits from the respective adults.


Assuntos
Tephritidae , Feminino , Masculino , Animais , Tephritidae/genética , Sistemas CRISPR-Cas , Pupa/genética , Drosophila , Genômica
15.
Bull Entomol Res ; 113(4): 574-586, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37501573

RESUMO

Insect response to cold stress is often associated with adaptive strategies and chemical variation. However, low-temperature domestication to promote the cold tolerance potential of Bactrocera dorsalis and transformation of main internal substances are not clear. Here, we use a series of low-temperature exposure experiments, supercooling point (SCP) measurement, physiological substances and cryoprotectants detection to reveal that pre-cooling with milder low temperatures (5 and 10°C) for several hours (rapid cold hardening) and days (cold acclimation) can dramatically improve the survival rate of adults and pupae under an extremely low temperature (-6.5°C). Besides, the effect of rapid cold hardening for adults could be maintained even 4 h later with 25°C exposures, and SCP was significantly declined after cold acclimation. Furthermore, content of water, fat, protein, glycogen, sorbitol, glycerol and trehalose in bodies were measured. Results showed that water content was reduced and increased content of proteins, glycogen, glycerol and trehalose after two cold domestications. Our findings suggest that rapid cold hardening and cold acclimation could enhance cold tolerance of B. dorsalis by increasing proteins, glycerol, trehalose and decreasing water content. Conclusively, identifying a physiological variation will be useful for predicting the occurrence and migration trend of B. dorsalis populations.


Assuntos
Glicerol , Tephritidae , Animais , Trealose , Temperatura Baixa , Tephritidae/fisiologia , Drosophila , Água , Aclimatação , Glicogênio
16.
Bull Entomol Res ; 113(3): 396-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36810104

RESUMO

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major global pest of fruits. Currently, the sequential male annihilation technique, followed by the sterile insect technique has been used to significantly reduce the population of feral males in this species. However, issues with sterile males being killed by going to male annihilation traps have reduced the efficacy of this approach. The availability of males that are non-methyl eugenol-responding would minimize this issue and increase the efficacy of both approaches. For this, we recently established two separate lines of non-methyl eugenol-responding males. These lines were reared for 10 generations and in this paper, we report on the assessment of males from these lines in terms of methyl eugenol response and mating ability. We saw a gradual decrease in non-responders from ca. 35 to 10% after the 7th generation. Despite that, there were still significant differences until the 10th generation in numbers of non-responders over controls using laboratory strain males. We did not attain pure isolines of non-methyl eugenol-responding males, so we used non-responders from the 10th generation of those lines as sires to initiate two reduced-responder lines. Using these reduced responder flies, we found that there was no significant difference in mating competitiveness when compared with control males. Overall, we suggest that it may be possible to establish lines of low or reduced responder males to be used for sterile release programs, that could be applied until the 10th generation of rearing. Our information will contribute to the further development of an increasingly successful management technique incorporating the use of SIT alongside MAT to contain wild populations of B. dorsalis.


Assuntos
Tephritidae , Masculino , Animais , Tephritidae/fisiologia , Eugenol/farmacologia , Comportamento Sexual Animal , Reprodução
17.
Ecotoxicol Environ Saf ; 265: 115502, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742569

RESUMO

In recent decades, the increasingly widespread application of chemical pesticides has exacerbated the emergence of insecticide resistance among insect pests. In this study, we examined the rapid response of bacteria in the midgut of the fruit fly Bactrocera tau (Walker) (Diptera: Tephritidae) to stress induced by the insecticides lambda-cyhalothrin and spinosad by analyzing the bacterial community structure and diversity in the midguts of 4-day-old B. tau. The results revealed that 4-day-old B. tau females were more resistant to lambda-cyhalothrin and spinosad than their 4-day-old male counterparts. Alpha- and beta-diversity analyses revealed no significant differences between male and female B. tau with respect to the diversity and richness of gut bacteria in response to the same treatments. In response to treatment with lambda-cyhalothrin and spinosad at lethal concentration 50 (LC50), we detected significant changes in the structure and diversity of the bacterial community in the midguts of both male and female B. tau. Particularly among the dominant bacterial genera, there were decreases in the relative abundances of Citrobacter, Enterobacter, Klebsiella, and Pectobacterium. Increases were observed in the relative abundances of Dysgonomonas, Erwinia, and Providencia. Our findings provide a theoretical basis for gaining a better understanding of the relationships between midgut bacteria and the insecticide resistance of B. tau.

18.
Ecotoxicol Environ Saf ; 264: 115434, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690174

RESUMO

Bactrocera dorsalis is a well-known invasive pest that causes considerable ecological and economic losses worldwild. Although it has a wide environmental tolerance, few studies have reported its mechanism of adaptation to multiple sub-lethal environmental stresses. In this study, 38, 41, 39 and 34 metabolites changed significantly in B. dorsalis under four sub-lethal stresses (heat, cold, desiccation and hypoxia), as found by the metabolomic method. Therein, lactic acid and pyruvic acid were induced, whereas metabolites in the tricarboxylic acid (TCA) cycle such as citric acid, α-ketoglutarate acid, malic acid and fumaric acid were reduced under at least one of the stresses. Enzyme activity and quantitative polymerase chain reaction (qPCR) analyses verified the repression of pyruvic acid proceeding into the TCA cycle. In addition, the levels of several cryoprotectants and membrane fatty acids in B. dorsalis were altered. The findings indicated that B. dorsalis has evolved shared metabolic pathways to adapt to heat, hypoxia and desiccation stresses, such as reducing energy consumption by activating the anaerobic glycolytic metabolism. Cryoprotectants and membrane fatty acids were produced to improve the efficiency of stress resistance. This study revealed the unique and generic crossed physiological mechanism of insects to adapt to various environmental stresses.


Assuntos
Ácido Pirúvico , Tephritidae , Animais , Drosophila , Ácidos Graxos , Hipóxia
19.
Pestic Biochem Physiol ; 196: 105611, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945250

RESUMO

The female reproductive potential plays a crucial role in reproduction, population dynamics and population maintenance. However, the function of endogenous genes in undifferentiated germ cells has been largely unknown in Bactrocera dorsalis. In this study, the conservative analysis showed that α-Spectrin shared a similarity in B. dorsalis and other dipteral flies. Further, the differential expression of α-Spectrin was examined in B. dorsalis by RT-qPCR, and the expression pattern of α-Spectrin protein was identified in female adult ovaries by using immunostaining. During the development of ovary, the change on the number of undifferentiated germ cells was also characterized and analyzed. To understand the function of α-Spectrin in B. dorsalis ovary, the RNAi-based knockdown was conducted, and the RNAi efficiency was examined by RT-qPCR, western blot and bioassay. The results revealed that the α-Spectrin dsRNA could strikingly decrease the expression level of α-Spectrin in ovaries and diminish oviposition and ovary size as a consequence of downregulation of α-Spectrin. Overall, our study facilitates reproductive research on the function of conservative genes in B. dorsalis ovary, which may provide a new insight into seeking novel target genes for pest management control.


Assuntos
Espectrina , Tephritidae , Animais , Feminino , Interferência de RNA , Espectrina/genética , Espectrina/metabolismo , Reprodução , Tephritidae/genética
20.
Pestic Biochem Physiol ; 193: 105443, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248012

RESUMO

Carboxylesterases (CarEs) are a multifunctional superfamily of enzymes and play an important role in detoxification of various insecticides in insects. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive agricultural pests and has developed different degrees of resistance to organophosphates in field. However, the involvement of BdCarEs in tolerance or resistance to other alternative insecticides are still unclear. In the present study, 33 BdCarEs genes were identified based on the genome database of B. dorsalis. Phylogenetic analysis demonstrated that they were classified into nine clades, with abundance of α-esterases. Meanwhile, the sequence characterization and the chromosome distribution were also analyzed. The spatiotemporal expression analysis of BdCarEs genes suggested that the diversity of potential function in different physiological processes. With the exception of BdCarE21, all BdCarEs genes responded to at least one insecticide exposure, and BdCarE20 was found to be up-regulated after exposure to all five tested insecticides individually. Eight BdCarEs genes were overexpressed in MR strain when compared to that in SS strain. Subsequently, knockdown the expression of representative BdCarEs genes significantly increased the susceptibility of the oriental fruit fly to corresponding insecticides, which indicated that the tested BdCarEs genes contributed to one or multiple insecticide detoxification. These findings provide valuable insights into the potential role in respond to tolerance or resistance to insecticides with different mode of action, and will facilitate development of efficiency management strategy for B. dorsalis.


Assuntos
Inseticidas , Tephritidae , Animais , Inseticidas/toxicidade , Carboxilesterase/genética , Malation/farmacologia , Filogenia , Resistência a Inseticidas/genética , Tephritidae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa