Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Immunity ; 48(1): 91-106.e6, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343444

RESUMO

CD103+ dendritic cells are critical for cross-presentation of tumor antigens. Here we have shown that during immunotherapy, large numbers of cells expressing CD103 arose in murine tumors via direct differentiation of Ly6c+ monocytic precursors. These Ly6c+CD103+ cells could derive from bone-marrow monocytic progenitors (cMoPs) or from peripheral cells present within the myeloid-derived suppressor cell (MDSC) population. Differentiation was controlled by inflammation-induced activation of the transcription factor p53, which drove upregulation of Batf3 and acquisition of the Ly6c+CD103+ phenotype. Mice with a targeted deletion of p53 in myeloid cells selectively lost the Ly6c+CD103+ population and became unable to respond to multiple forms of immunotherapy and immunogenic chemotherapy. Conversely, increasing p53 expression using a p53-agonist drug caused a sustained increase in Ly6c+CD103+ cells in tumors during immunotherapy, which markedly enhanced the efficacy and duration of response. Thus, p53-driven differentiation of Ly6c+CD103+ monocytic cells represents a potent and previously unrecognized target for immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/fisiologia , Monócitos/fisiologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Cadeias alfa de Integrinas/metabolismo , Camundongos , Monócitos/imunologia , Células Mieloides/fisiologia
2.
Immunogenetics ; 76(2): 75-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358555

RESUMO

The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.


Assuntos
Neoplasias , Proteínas Repressoras , Humanos , Animais , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/terapia , Neoplasias/metabolismo , Células Dendríticas , Carcinogênese , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral
3.
Mol Biol Rep ; 51(1): 100, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217769

RESUMO

OBJECTIVE: Despite considerable improvement in therapeutic approaches to chronic myeloid leukemia (CML) treatment, this malignancy is considered incurable due to resistance. However, investigating the molecular mechanism of CML may give rise to the development of extremely efficient targeted therapies that improve the prognosis of patients. Basic leucine zipper transcription factor ATF-like3 (BATF3), as transcription factor, is considered a key regulator of cellular activities and its function has been evaluated in tumor development and growth in several cancer types. This study aimed to evaluate the potential of the cellular impact of siRNA-mediated downregulation of BATF3 on CML cancer cells through cell proliferation, induction of apoptosis, and cell cycle distribution. MATERIALS AND METHODS: The transfection of BATF3 siRNA to K562 CML cells was performed by electroporation device. To measure cellular viability and apoptosis, MTT assay and Annexin V/PI staining were carried out, respectively. Also, cell cycle assay and flow cytometry instrument were applied to assess cell cycle distribution of K562 cells. For more validation, mRNA expression of correlated genes was relatively evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The data indicated that siRNA-mediated BATF3 inactivating severely promoted the cell apoptosis. Also, the targeted therapy led to high expression of Caspase-3 gene and Bax/Bcl-2 ratio. Silenced BATF3 also induced cell cycle arrest in phase sub-G1 compared to control. Finally, a noticeable decrement was obtained in c-Myc gene expression through suppression of BATF3 in CML cells. CONCLUSION: The findings of this research illustrated the suppression of BATF3 as an effective targeted therapy strategy for CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Apoptose/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
4.
Cell Immunol ; 371: 104468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968772

RESUMO

Dendritic cells (DCs) play central role in innate as well as adaptive immune responses regulated by diverse DC subtypes that vary in terms of surface markers, transcriptional profile and functional responses. Generation of DC diversity from progenitor stage is tightly regulated by complex molecular inter-play between transcription factors. We earlier demonstrated that Batf3 and Id2 expression have a synergistic effect on the Irf8 directed classical cDC1 development. In present study, Bi-molecular fluorescence complementation assay suggested that IRF8 interacts with BATF3, and ID2 may aid cDC1 development independently. Genome wide recruitment analysis of IRF8 and BATF3 from different DC subtypes led to identification of the overlapping regions of occupancy by these two transcription factors. Further analysis of overlapping peaks of IRF8 and BATF3 occupancy in promoter region within the cDC1 subtype specific transcriptional pattern identified a metabolically important Pfkfb3 gene. Among various immune cell types; splenic cDC1 subtype displayed enhanced expression of Pfkfb3. Analysis of Irf8-/-, Irf8R294C and Batf3DCKO DC confirmed direct regulation of Pfkfb3 enhanced expression specifically in cDC1 subtype. Further we show that inhibition of PFKFB3 enzymatic activity by a chemical agent PFK15 led to reduction in cDC1 subtype in both in vitro FLDC cultures as well as in vivo mouse spleens. Together, our study identified the direct regulation of cDC1 specific enhanced expression of Pfkfb3 in glycolysis and cDC1 biology.


Assuntos
Células Dendríticas/imunologia , Fatores Reguladores de Interferon/metabolismo , Fosfofrutoquinase-2/biossíntese , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/genética , Glicólise/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/genética , Regiões Promotoras Genéticas/genética , Piridinas/farmacologia , Quinolinas/farmacologia
5.
Eur J Immunol ; 48(6): 965-974, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29543979

RESUMO

Nasopharyngeal colonization with Streptococcus pneumoniae (the pneumococcus) is known to mount protective adaptive immune responses in rodents and humans. However, the cellular response of the nasopharyngeal compartment to pneumococcal colonization and its importance for the ensuing adaptive immune response is only partially defined. Here we show that nasopharyngeal colonization with S. pneumoniae triggered substantial expansion of both integrin αE (CD103) positive dendritic cells (DC) and T lymphocytes in nasopharynx, nasal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLN) of WT mice. However, nasopharyngeal de-colonization and pneumococcus-specific antibody responses were similar between WT and CD103 KO mice or Batf3 KO mice. Also, naïve WT mice passively immunized with antiserum from previously colonized WT and CD103 KO mice were similarly protected against invasive pneumococcal disease (IPD). In summary, the data show that CD103 is dispensable for pneumococcal colonization-induced adaptive immune responses in mice.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/metabolismo , Tecido Linfoide/imunologia , Doenças Nasofaríngeas/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/fisiologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Anticorpos Antibacterianos/metabolismo , Antígenos CD/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Cadeias alfa de Integrinas/genética , Ativação Linfocitária , Tecido Linfoide/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética
6.
Biochem Biophys Res Commun ; 508(3): 980-985, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30551880

RESUMO

Growing evidence indicates that circular RNA (circRNA) plays an important role in the regulation of tumor biological behaviors. In this study, we aimed to explore the role of a novel circRNA, circ_0034642, in glioma. qRT-PCR was conducted to evaluate the levels of circ_0034642 in glioma tissues and cells. In addition, the clinical severity and prognostic role of circ_0034642 were illustrated. Functionally, loss and gain-of function assays were performed by CCK-8, colony-forming, flow cytometric and transwell experiments in glioma cells. Moreover, luciferase reporter assay was used to detect the mechanism of circ_0034642. Circ_0034642 was upregulated in glioma tissues and cell lines. Overexpressed circ_0034642 was correlated with adverse phenotypes in the patients with glioma. In addition, circ_0034642 could be regarded as a prognostic predictor for glioma patients. Moreover, circ_0034642 could promote cell proliferation, migratory and invasive capacities and inhibit cell apoptosis. For the mechanism investigation, circ_0034642 was proved to be a sponge of miR-1205, and miR-1205 could regulate BATF3 expression via targeting 3'UTR of BATF3. Rescue assays also illustrated that the oncogenic function of circ_0034642 is partly attributed to its modulation on miR-1205/BATF3 axis. Collectively, circ_0034642/miR-1205/BATF3 pathway may play an important role in glioma.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Neoplasias Encefálicas/genética , Glioma/genética , MicroRNAs/genética , RNA/metabolismo , Proteínas Repressoras/genética , Adulto , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glioma/metabolismo , Glioma/patologia , Glioma/secundário , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Circular , Proteínas Repressoras/metabolismo , Transdução de Sinais
7.
Nutr Res Rev ; 32(1): 128-145, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30707092

RESUMO

Early-life nutrition plays a critical role in fetal growth and development. Food intake absence and excess are the two main types of energy malnutrition that predispose to the appearance of diseases in adulthood, according to the hypothesis of 'developmental origins of health and disease'. Epidemiological data have shown an association between early-life malnutrition and the metabolic syndrome in later life. Evidence has also demonstrated that nutrition during this period of life can affect the development of the immune system through epigenetic mechanisms. Thus, epigenetics has an essential role in the complex interplay between environmental factors and genetics. Altogether, this leads to the inflammatory response that is commonly seen in non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome. In conjunction, DNA methylation, covalent modification of histones and the expression of non-coding RNA are the epigenetic phenomena that affect inflammatory processes in the context of NAFLD. Here, we highlight current understanding of the mechanisms underlying developmental programming of NAFLD linked to epigenetic modulation of the immune system and environmental factors, such as malnutrition.


Assuntos
Epigênese Genética , Sistema Imunitário/fisiologia , Fígado/patologia , Desnutrição/complicações , Fenômenos Fisiológicos da Nutrição Materna , Hepatopatia Gordurosa não Alcoólica/etiologia , Estado Nutricional , Carcinoma Hepatocelular/etiologia , Metilação de DNA , Feminino , Histonas , Humanos , Inflamação/etiologia , Síndrome Metabólica/etiologia , MicroRNAs , Gravidez , Efeitos Tardios da Exposição Pré-Natal
8.
Int J Mol Sci ; 20(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987332

RESUMO

Basic leucine zipper transcription factor ATF-like (BATF)-3, belonging to activator protein 1 (AP-1) superfamily transcription factors, is essential for homeostatic development of CD8α⁺ classical dendritic cells activating CD8 T-cell responses to intracellular pathogens. In this study, the characteristics and cDNA cloning of the CiBATF3 molecule were described in grass carp (Ctenopharyngodon idella). CiBATF3 had abundant expression in immune-related organizations, including liver, spleen and gill, and grass carp reovirus (GCRV) infection had significantly changed its expression level. After Ctenopharyngodon idella kidney (CIK) cells were challenged with pathogen-associated molecular patterns (PAMPs), polyinosinic:polycytidylic acid (poly(I:C)) stimulation induced higher mRNA levels of CiBATF3 than that of lipopolysaccharide (LPS). Subcellular localization showed that CiBATF3-GFP was entirely distributed throughout cells and nuclear translocation of CiBATF3 was found after poly(I:C) treatment. Additionally, the interaction between CiBATF3 and interleukin 10 (IL-10) was proven by bimolecular fluorescence complementation (BiFC) system. The small interfering RNA (siRNA)-mediated CiBATF3 silencing showed that the mRNA of CiBATF3 and its downstream genes were down-regulated in vitro and in vivo. CiBATF3 played a negative regulatory role in the transcriptional activities of AP-1 and NF-κB reporter gene. In summary, the results may provide valuable information on fundamental functional mechanisms of CiBATF3.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carpas/metabolismo , Imunidade Inata/fisiologia , Infecções por Reoviridae/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Fator de Transcrição AP-1/metabolismo
9.
Am J Respir Cell Mol Biol ; 59(5): 580-591, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953261

RESUMO

Early recognition of neoantigen-expressing cells is complex, involving multiple immune cell types. In this study, in vivo, we examined how antigen-presenting cell subtypes coordinate and induce an immunological response against neoantigen-expressing cells, particularly in the absence of a pathogen-associated molecular pattern, which is normally required to license antigen-presenting cells to present foreign or self-antigens as immunogens. Using two reductionist models of neoantigen-expressing cells and two cancer models, we demonstrated that natural IgM is essential for the recognition and initiation of adaptive immunity against neoantigen-expressing cells. Natural IgM antibodies form a cellular immune complex with the neoantigen-expressing cells. This immune complex licenses surveying monocytes to present neoantigens as immunogens to CD4+ T cells. CD4+ T helper cells, in turn, use CD40L to license cross-presenting CD40+ Batf3+ dendritic cells to elicit a cytotoxic T cell response against neoantigen-expressing cells. Any break along this immunological chain reaction results in the escape of neoantigen-expressing cells. This study demonstrates the surprising, essential role of natural IgM as the initiator of a sequential signaling cascade involving multiple immune cell subtypes. This sequence is required to coordinate an adaptive immune response against neoantigen-expressing cells.


Assuntos
Imunidade Adaptativa , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoglobulina M/imunologia , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação Linfocitária , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
10.
Eur J Immunol ; 45(1): 119-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312824

RESUMO

The role of different DC subsets in priming and maintenance of immunity against Leishmania major (L. major) infection is debated. The transcription factor basic leucine zipper transcription factor, ATF-like 3 (Batf3) is essential for the development of mouse CD103(+) DCs and some functions of CD8α(+) DCs. We found that CD103(+) DCs were significantly reduced in the dermis of Batf3-deficient C57BL/6 mice. Batf3(-/-) mice developed exacerbated and unresolved cutaneous pathology following a low dose of intradermal L. major infection in the ear pinnae. Parasite load was increased 1000-fold locally and expanded systemically. Batf3 deficiency did not affect L. major antigen presentation to T cells, which was directly exerted by CD8α(-) conventional DCs (cDCs) in the skin draining LN. However, CD4(+) T-cell differentiation in the LN and skin was skewed to nonprotective Treg- and Th2-cell subtypes. CD103(+) DCs are major IL-12 producers during L. major infection. Local Th1 immunity was severely hindered, correlating with impaired IL-12 production and reduction in CD103(+) DC numbers. Adoptive transfer of WT but not IL-12p40(-/-) Batf3-dependent DCs significantly improved anti-L. major response in infected Batf3(-/-) mice. Our results suggest that IL-12 production by Batf3-dependent CD103(+) DCs is crucial for maintenance of local Th1 immunity against L. major infection.


Assuntos
Antígenos CD/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Interleucina-12/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Proteínas Repressoras/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Antígenos CD/genética , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Antígenos CD8/genética , Antígenos CD8/imunologia , Diferenciação Celular , Células Dendríticas/parasitologia , Células Dendríticas/transplante , Regulação da Expressão Gênica , Cadeias alfa de Integrinas/genética , Interleucina-12/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/parasitologia , Células Th1/parasitologia , Células Th2/imunologia , Células Th2/parasitologia
11.
Glia ; 63(12): 2231-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26184558

RESUMO

The role and different origin of brain myeloid cells in the brain is central to understanding how the central nervous system (CNS) responds to injury. C-type lectin receptor family 9, member A (DNGR-1/CLEC9A) is a marker of specific DC subsets that share functional similarities, such as CD8α(+) DCs in lymphoid tissues and CD103(+) CD11b(low) DCs in peripheral tissues. Here, we analyzed the presence of DNGR-1 in DCs present in the mouse brain (bDCs). Dngr-1/Clec9a mRNA is expressed mainly in the meningeal membranes and choroid plexus (m/Ch), and its expression is enhanced by fms-like tyrosine kinase 3 ligand (Flt3L), a cytokine involved in DC homeostasis. Using Clec9a(egfp/egfp) mice, we show that Flt3L induces accumulation of DNGR-1-EGFP(+) cells in the brain m/Ch. Most of these cells also express major histocompatibility complex class II (MHCII) molecules. We also observed an increase in specific markers of cDC CD8α+ cells such as Batf-3 and Irf-8, but not of costimulatory molecules such as Cd80 and Cd86, indicating an immature phenotype for these bDCs in the noninjured brain. The presence of DNGR-1 in the brain provides a potential marker for the study of this specific brain cell subset. Knowledge and targeting of brain antigen presenting cells (APCs) has implications for the fight against brain diseases such as neuroinflammation-based neurodegenerative diseases, microbe-induced encephalitis, and brain tumors such as gliomas.


Assuntos
Plexo Corióideo/citologia , Células Dendríticas/citologia , Lectinas Tipo C/metabolismo , Meninges/citologia , Receptores Imunológicos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Plexo Corióideo/metabolismo , Células Dendríticas/metabolismo , Genes MHC da Classe II/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores Reguladores de Interferon/metabolismo , Lectinas Tipo C/genética , Antígenos Comuns de Leucócito/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Meninges/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
12.
Eur J Immunol ; 44(5): 1422-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24643576

RESUMO

Leishmania major infection induces self-healing cutaneous lesions in C57BL/6 mice. Both IL-12 and IFN-γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3(-/-) ) mice (C57BL/6 background) that lack the major IL-12 producing and cross-presenting CD8α(+) and CD103(+) DC subsets. Batf3(-/-) mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3(-/-) mice secreted less IFN-γ, but more Th2- and Th17-type cytokines, mirrored by increased serum IgE and Leishmania-specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α(+) DCs isolated from lymph nodes of L. major-infected mice induced significantly more IFN-γ secretion by L. major-stimulated immune T cells than CD103(+) DCs. We next developed CD11c-diptheria toxin receptor: Batf3(-/-) mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf-3-dependent DCs from day 17 or wild-type mice depleted of cross-presenting DCs from 17-19 days after infection maintained significantly larger lesions similar to mice whose Batf-3-dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf-3-dependent DCs in protection against L. major.


Assuntos
Apresentação de Antígeno , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Proteínas Repressoras/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Apresentação Cruzada/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Imunoglobulina E/sangue , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Interferon gama , Leishmania major/metabolismo , Leishmaniose Cutânea/sangue , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/patologia
13.
Biol Blood Marrow Transplant ; 20(11): 1696-704, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132527

RESUMO

Graft-versus-host disease (GVHD) is a frequent life-threatening complication after allogeneic hematopoietic stem cell transplantation (HSCT) and induced by donor-derived T cells that become activated by host antigen-presenting cells. To address the relevance of host dendritic cell (DC) populations in this disease, we used mouse strains deficient in CD11c(+) or CD8α(+) DC populations in a model of acute GVHD where bone marrow and T cells from BALB/c donors were transplanted into C57BL/6 hosts. Surprisingly, a strong increase in GVHD-related mortality was observed in the absence of CD11c(+) cells. Likewise, Batf3-deficient (Batf3(-/-)) mice that lack CD8α(+) DCs also displayed a strongly increased GVHD-related mortality. In the absence of CD8α(+) DCs, we detected an increased activation of the remaining DC populations after HSCT, leading to an enhanced priming of allogeneic T cells. Importantly, this was associated with reduced numbers of regulatory T cells and transforming growth factor-ß levels, indicating an aggravated failure of peripheral tolerance mechanisms after HSCT in the absence of CD8α(+) DCs. In summary, our results indicate a critical role of CD8α(+) DCs as important inducers of regulatory T cell-mediated tolerance to control DC activation and T cell priming in the initiation phase of GVHD.


Assuntos
Transplante de Medula Óssea/métodos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante Homólogo/métodos , Animais , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
mBio ; 15(10): e0037524, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39254303

RESUMO

Dendritic cells are crucial for bridging innate and adaptive immunity. Cryptococcosis, caused by Cryptococcus neoformans and Cryptococcus gattii, is responsible for >15% of AIDS-related deaths. A recent study by Xu et al. showed that Batf3-dependent conventional type 1 dendritic (cDC1) cells are key players in generating IFNγ+ CD4+ T cell and fungicidal lung and brain tissue-resident responses during murine cryptococcosis, contributing to fungal clearance in the lungs and brain of mice (J. Xu, R. Hissong, R. Bareis, A. Creech, et al., mBio 15:e02853-23, 2024, https://doi.org/10.1128/mbio.02853-23). However, despite their critical role, the depletion of Batf3-dependent cDC1 cells did not significantly alter overall mouse survival or disease progression, highlighting the complex immune regulation required to survive cryptococcal infection and the need for further research in medical mycology.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cryptococcus neoformans , Células Dendríticas , Meningite Criptocócica , Células Th1 , Animais , Camundongos , Meningite Criptocócica/imunologia , Meningite Criptocócica/microbiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cryptococcus neoformans/imunologia , Células Th1/imunologia , Células Dendríticas/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/imunologia , Cryptococcus gattii/imunologia , Encéfalo/imunologia , Encéfalo/microbiologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia
15.
mBio ; 15(3): e0285323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349130

RESUMO

While type I conventional dendritic cells (cDC1s) are vital for generating adaptive immunity against intracellular pathogens and tumors, their role in defense against fungal pathogen Cryptococcus neoformans remains unclear. We investigated the role of the cDC1 subset in a fungus-restricting mouse model of cryptococcal infection. The cDC1 subset displayed a unique transcriptional signature with highly upregulated T-cell recruitment, polarization, and activation pathways compared to other DC subsets. Using Batf3-/- mice, which lack the cDC1 population, our results support that Batf3-dependent cDC1s are pivotal for the development of the effective immune response against cryptococcal infection, particularly within the lung and brain. Deficiency in Batf3 cDC1 led to diminished CD4 accumulation and decreased IFNγ production across multiple organs, supporting that cDC1s are a major driver of potent Th1 responses during cryptococcal infection. Consistently, mice lacking Batf3-cDC1 demonstrated markedly diminished fungicidal activity and weaker containment of the fungal pathogen. In conclusion, Batf3-dependent cDC1 can function as a linchpin in mounting Th1 response, ensuring effective fungal control during cryptococcal infection. Harnessing cDC1 pathways may present a promising strategy for interventions against this pathogen.IMPORTANCECryptococcus neoformans causes severe meningoencephalitis, accounting for an estimated 200,000 deaths each year. Central to mounting an effective defense against these infections is T-cell-mediated immunity, which is orchestrated by dendritic cells (DCs). The knowledge about the role of specific DC subsets in shaping anti-cryptococcal immunity is limited. Here, we demonstrate that Batf3 cDC1s are important drivers of protective Th1 CD4 T-cell responses required for clearance of cryptococcal infection. Deficiency of Batf3 cDC1 in the infected mice leads to significantly reduced Th1 response and exacerbated fungal growth to the point where depleting the remaining CD4 T cells no longer affects fungal burden. Unveiling this pivotal role of cDC1 in antifungal defense is likely to be important for the development of vaccines and therapies against life-threatening fungal pathogens.


Assuntos
Criptococose , Cryptococcus neoformans , Meningoencefalite , Animais , Camundongos , Linfócitos T CD4-Positivos , Criptococose/microbiologia , Células Dendríticas , Imunidade Celular
16.
Cell Rep ; 43(5): 114141, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656869

RESUMO

The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.


Assuntos
Antígeno B7-H1 , Fatores de Transcrição de Zíper de Leucina Básica , Linfócitos T CD8-Positivos , Células Dendríticas , Receptor de Morte Celular Programada 1 , Proteínas Repressoras , Microambiente Tumoral , Animais , Humanos , Camundongos , Ligante 4-1BB/metabolismo , Ligante 4-1BB/genética , Antígeno B7-H1/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
17.
J Hepatol ; 59(5): 1124-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23727306

RESUMO

The phenotype and function of liver dendritic cells (LDCs) are poorly understood. This Snapshot summarizes our current knowledge on LDCs in the healthy and injured liver, and their role in fibrosis progression and reversal. It also draws attention to various pitfalls in the current experimental design and conclusions based on available data.


Assuntos
Células Dendríticas/patologia , Cirrose Hepática/patologia , Fígado/lesões , Fígado/patologia , Animais , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fígado/fisiopatologia , Cirrose Hepática/fisiopatologia , Camundongos , Fenótipo
18.
Cell Rep ; 42(10): 113299, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864794

RESUMO

The current paradigm indicates that naive T cells are primed in secondary lymphoid organs. Here, we present evidence that intranasal administration of peptide antigens appended to nanofibers primes naive CD8+ T cells in the lung independently and prior to priming in the draining mediastinal lymph node (MLN). Notably, comparable accumulation and transcriptomic responses of CD8+ T cells in lung and MLN are observed in both Batf3KO and wild-type (WT) mice, indicating that, while cDC1 dendritic cells (DCs) are the major subset for cross-presentation, cDC2 DCs alone are capable of cross-priming CD8+ T cells both in the lung and draining MLN. Transcription analyses reveal distinct transcriptional responses in lung cDC1 and cDC2 to intranasal nanofiber immunization. However, both DC subsets acquire shared transcriptional responses upon migration into the lymph node, thus uncovering a stepwise activation process of cDC1 and cDC2 toward their ability to cross-prime effector and functional memory CD8+ T cell responses.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos , Animais , Pulmão , Apresentação Cruzada , Linfonodos
19.
Ann Clin Lab Sci ; 52(5): 772-780, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36261191

RESUMO

OBJECTIVE: Gastric cancer is one of the most common and deadly cancers worldwide. Basic leucine zipper transcription factor ATF-like 3 (BATF3) plays a key role in tumor immunity. However, the function of BATF3 in gastric cancer remains unclear. Here, we demonstrated BATF3 positively regulated proliferation and radioresistance of gastric cancer cells by regulating S1PR1/STAT3 pathway. METHODS: The RNA-seq analyzed the gene expression by UALCAN web portal and Tumor Immune Estimation Resource. RT-qPCR and western blot was performed to verify BATF3 expression in gastric cancer cells. The assays of CCK-8, EdU incorporation and colony formation were used to analyze cell proliferation, and radioresistance in AGS and MKN45 cells. Flow cytometry was used to detect the cell apoptosis of AGS and MKN45 in treatment with si-BATF3 or radiation. Finally, western blot was performed to measure the expression of cell apoptosis-related modules including Bax, cleaved-caspase3, cleaved-PARP and assess the regulation of S1PR1/STAT3 pathway. RESULTS: BATF3 expression was upregulated in gastric cancer cells. Knockdown of BATF3 suppressed proliferation, radioresistance but promoted the radiation-induced apoptosis of gastric cancer cells through positively regulating S1PR1 expression and STAT3 phosphorylation. CONCLUSIONS: Knockdown of BATF3 inhibits gastric cancer cell growth and radioresistance via S1PR1/STAT3 pathway. BATF3 would become a potential diagnostic indicator for gastric cancer and target of therapeutic treatment.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Sincalida/genética , Sincalida/metabolismo , Sincalida/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais/genética , Proliferação de Células/genética , Apoptose/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Transformação Celular Neoplásica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Receptores de Esfingosina-1-Fosfato , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
Front Immunol ; 13: 841065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812447

RESUMO

The intestinal immune system and microbiota are emerging as important contributors to the development of metabolic syndrome, but the role of intestinal dendritic cells (DCs) in this context is incompletely understood. BATF3 is a transcription factor essential in the development of mucosal conventional DCs type 1 (cDC1). We show that Batf3-/- mice developed metabolic syndrome and have altered localization of tight junction proteins in intestinal epithelial cells leading to increased intestinal permeability. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose reduced intestinal inflammation and restored barrier function in obese Batf3-/- mice. High-fat diet further enhanced the metabolic phenotype and susceptibility to dextran sulfate sodium colitis in Batf3-/- mice. Antibiotic treatment of Batf3-/- mice prevented metabolic syndrome and impaired intestinal barrier function. Batf3-/- mice have altered IgA-coating of fecal bacteria and displayed microbial dysbiosis marked by decreased obesity protective Akkermansia muciniphila, and Bifidobacterium. Thus, BATF3 protects against metabolic syndrome and preserves intestinal epithelial barrier by maintaining beneficial microbiota.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Microbioma Gastrointestinal/genética , Homeostase , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa