RESUMO
BACKGROUND: Minimally invasive, battery-powered drilling systems have become the preferred tool for obtaining representative samples from bone lesions. However, the heat generated during battery-powered bone drilling for bone biopsies has not yet been sufficiently investigated. Thermal necrosis can occur if the bone temperature exceeds a critical threshold for a certain period of time. PURPOSE: To investigate heat production as a function of femur temperature during and after battery-powered percutaneous bone drilling in a porcine in vivo model. METHODS: We performed 16 femur drillings in 13 domestic pigs with an average age of 22 weeks and an average body temperature of 39.7 °C, using a battery-powered drilling system and an intraosseous temperature monitoring device. The standardized duration of the drilling procedure was 20 s. The bone core specimens obtained were embedded in 4% formalin, stained with haematoxylin and eosin (H&E) and sent for pathological analysis of tissue quality and signs of thermal damage. RESULTS: No significant changes in the pigs' local temperature were observed after bone drilling with a battery-powered drill device. Across all measurements, the median change in temperature between the initial measurement and the temperature measured after drilling (at 20 s) was 0.1 °C. Histological examination of the bone core specimens revealed no signs of mechanical or thermal damage. CONCLUSION: Overall, this preliminary study shows that battery-powered, drill-assisted harvesting of bone core specimens does not appear to cause mechanical or thermal damage.