Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2301250120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428903

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Suínos , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Proteoma/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Músculo Esquelético/metabolismo , Éxons/genética
2.
Neurogenetics ; 25(3): 201-213, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850354

RESUMO

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.


Assuntos
Distrofina , Éxons , Distrofia Muscular de Duchenne , Fenótipo , Humanos , Distrofia Muscular de Duchenne/genética , Turquia , Masculino , Distrofina/genética , Criança , Feminino , Adolescente , Pré-Escolar , Éxons/genética , Estudos de Associação Genética/métodos , Mutação , Adulto , Genótipo , Adulto Jovem , Reação em Cadeia da Polimerase Multiplex
3.
Neurol Sci ; 45(4): 1691-1698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37968431

RESUMO

BACKGROUND: Distrophinopathies are a heterogeneous group of neuromuscular disorders due to mutations in the DMD gene. Different isoforms of dystrophin are also expressed in the cerebral cortex and Purkinje cells. Despite cognitive abnormalities in Duchenne muscular dystrophy subjects that have been described in the literature, little is known about a comprehensive cognitive profile in Becker muscular dystrophy patients. AIM: The aim of this study was to assess cognitive functioning in Becker muscular dystrophy patients by using an extensive neuropsychological battery. Our hypothesis is that the most impaired functions are the highly intentional and conscious ones, such as working memory functions, which require a prolonged state of cellular activation. METHODS: We performed an extensive neuropsychological assessment on 28 Becker muscular dystrophy patients from 18 to 65 years old. As control subjects, we selected 20 patients with limb-girdle muscular dystrophy, whose clinical picture was similar except for cognitive integrity. The evaluation, although extended to all areas, was focused on prefrontal control skills, with a distinction between inhibitory processes of selective attention and activating processes of working memory. RESULTS AND CONCLUSIONS: Significant underperformances were found exclusively in the Dual Task and PASAT tests, to demonstrate a selective impairment of working memory that, while not causing intellectual disability, reduces the intellectual potential of patients with Becker muscular dystrophy.


Assuntos
Distrofia Muscular de Duchenne , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Cognição , Distrofina/genética , Função Executiva , Memória de Curto Prazo , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética
4.
Neurol Sci ; 45(7): 3471-3479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38150129

RESUMO

BACKGROUND AND OBJECTIVE: Only few studies investigated social cognition in Becker muscular dystrophy (BMD). However, brain dystrophin deficiency could be a neural substrate for cognitive, emotional, and neuropsychological features in BMD. METHODS: We compared interoceptive accuracy and interpersonal comfort distance in two brothers with BMD presenting with the same genetic deletion and a healthy control. When possible, we collected neuropsychological and psychopathological assessments. RESULTS: Our BMD patients were significantly different in interoceptive accuracy, with patient 1 being extremely accurate and patient 2 being significantly less accurate than his brother but more accurate than the control. Interestingly, they presented opposite patterns of interpersonal distance. Patient 1 was comfortable with very short interpersonal distance (≤50 cm from the confederate/object) vs the control and patient 2. By contrast, patient 2 preferred larger distance vs the control and patient 1. Patient 1 also presented difficulties in social and emotional skills on the psychopathological assessment. CONCLUSIONS: We are aware this is a small sample; nonetheless, this is also the first description of such aspects in BMD and the first report ever of such divergent behavioral pattern. As impaired social cognition affects the quality of life and social relationship, further studies are needed for a closer understanding of involved mechanisms.


Assuntos
Distrofia Muscular de Duchenne , Fenótipo , Irmãos , Cognição Social , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/psicologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/complicações , Adulto , Testes Neuropsicológicos
5.
J Genet Couns ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895972

RESUMO

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are the most common inherited neuromuscular diseases. Following the identification of a pathogenic causative variant in the DMD gene of a proband, potential carriers can be informed of their risk of having offspring with the disease. Germline mosaicism is a variant that is confined to the gonads that can be transmitted to offspring and is usually reported when a non-carrier of a DMD pathogenic variant has two or more offspring carrying the variant in question. On average, one third of cases are the result of a de novo variant, and as DMD and BMD are prone to germline mosaicism, its inclusion in genetic counseling is mandatory. In this retrospective cohort study, we presented clinical data from an unpublished DMD/BMD cohort of 332 families with incidence of germline mosaicism in families with de novo transmission of 8.1%. This is also the first systematic literature review searching PubMed to provide an accurate assessment of the current literature on germline mosaicism in DMD and BMD, including 17 case reports and 20 original studies. The incidence of documented germline mosaicism in de novo event families ranged from 6.0 to 40%, with a mean of 8.3%. The estimated recurrence risk for mothers of a patient with a proven de novo causal variant ranged from 4.3 to 11%, with a mean of 5.8% for a male fetus. By providing an up-to-date and comprehensive overview of the literature, this review aims to improve our understanding of germline mosaicism in DMD and to promote the development of effective strategies and reliable data for occurrence risk assessment in genetic counseling of de novo event families.

6.
J Genet Couns ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682751

RESUMO

The dystrophinopathies encompass the phenotypically variable forms of muscular dystrophy caused by pathogenic variants in the DMD gene. The dystrophinopathies include the most common inherited muscular dystrophy among 46,XY individuals, Duchenne muscular dystrophy, as well as Becker muscular dystrophy and other less common phenotypic variants. With increased access to and utilization of genetic testing in the diagnostic and carrier setting, genetic counselors and clinicians in diverse specialty areas may care for individuals with and carriers of dystrophinopathy. This practice resource was developed as a tool for genetic counselors and other health care professionals to support counseling regarding dystrophinopathies, including diagnosis, health risks and management, psychosocial needs, reproductive options, clinical trials, and treatment. Genetic testing efforts have enabled genotype/phenotype correlation in the dystrophinopathies, but have also revealed unexpected findings, further complicating genetic counseling for this group of conditions. Additionally, the therapeutic landscape for dystrophinopathies has dramatically changed with several FDA-approved therapeutics, an expansive research pathway, and numerous clinical trials. Genotype-phenotype correlations are especially complex and genetic counselors' unique skill sets are useful in exploring and explaining this to families. Given the recent advances in diagnostic testing and therapeutics related to dystrophinopathies, this practice resource is a timely update for genetic counselors and other healthcare professionals involved in the diagnosis and care of individuals with dystrophinopathies.

7.
Am J Physiol Cell Physiol ; 325(5): C1326-C1335, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37781738

RESUMO

Muscular dystrophy exerts significant and dramatic impacts on affected patients, including progressive muscle wasting leading to lung and heart failure, and results in severely curtailed lifespan. Although the focus for many years has been on the dysfunction induced by the loss of function of dystrophin or related components of the striated muscle costamere, recent studies have demonstrated that accompanying pathologies, particularly muscle fibrosis, also contribute adversely to patient outcomes. A significant body of research has now shown that therapeutically targeting these accompanying pathologies via their underlying molecular mechanisms may provide novel approaches to patient management that can complement the current standard of care. In this review, we discuss the interplay between muscle fibrosis and muscular dystrophy pathology. A better understanding of these processes will contribute to improved patient care options, restoration of muscle function, and reduced patient morbidity and mortality.


Assuntos
Insuficiência Cardíaca , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/patologia , Fibrose , Miofibrilas/patologia , Insuficiência Cardíaca/patologia
8.
Vet Pathol ; : 3009858231214028, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006213

RESUMO

During meat inspections in pigs, dystrophinopathies are among the muscle lesions targeted for disposal. In this study, the authors examined the lesions and the distribution of dystrophin expression in 25 pigs with dystrophinopathy. In addition, complementary deoxyribonucleic acid (cDNA) sequencing and western blotting were performed in 6 of the 25 cases, all of which were characterized by degeneration, necrosis, and fat replacement of muscle fibers. Comparing the results of immunohistochemistry with anti-dystrophin antibodies that recognized at different sites in the protein, the authors noted that the loss of dystrophin expression was most pronounced in the C-terminus-recognizing antibody (19/25 cases). The authors detected 5 missense mutations and 3 types of shortened transcripts generated by the skipping of exons in the cDNA, which were associated with the pathogenesis. One missense mutation had been reported previously, whereas the remaining mutations identified had not been previously documented in pigs. In the cases with shortened transcripts, normal-sized transcripts were detected together with the defective transcripts, suggesting that these mutations were caused by splicing abnormalities. In addition, they were in-frame mutations, all of which have similar pathogeneses of Becker muscular dystrophy in humans. These cases were 6 months of age and exhibited macroscopic discoloration, fatty replacement, and muscle degeneration, suggesting that the effect of these mutations on skeletal muscle was significant.

9.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679627

RESUMO

(1) Background: Duchenne (DMD) is a rare neuromuscular disease that progressively weakens muscles, which severely impairs gait capacity. The Six Minute-Walk Test (6MWT), which is commonly used to evaluate and monitor the disease's evolution, presents significant variability due to extrinsic factors such as patient motivation, fatigue, and learning effects. Therefore, there is a clear need for the establishment of precise clinical endpoints to measure patient mobility. (2) Methods: A novel score (6M+ and 2M+) is proposed, which is derived from the use of a new portable monitoring system capable of carrying out a complete gait analysis. The system includes several biomechanical sensors: a heart rate band, inertial measurement units, electromyography shorts, and plantar pressure insoles. The scores were obtained by processing the sensor signals and via gaussian-mixture clustering. (3) Results: The 6M+ and 2M+ scores were evaluated against the North Star Ambulatory Assessment (NSAA), the gold-standard for measuring DMD, and six- and two-minute distances. The 6M+ and 2M+ tests led to superior distances when tested against the NSAA. The 6M+ test and the 2M+ test in particular were the most correlated with age, suggesting that these scores better characterize the gait regressions in DMD. Additionally, the 2M+ test demonstrated an accuracy and stability similar to the 6M+ test. (4) Conclusions: The novel monitoring system described herein exhibited good usability with respect to functional testing in a clinical environment and demonstrated an improvement in the objectivity and reliability of monitoring the evolution of neuromuscular diseases.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Fenômenos Biomecânicos , Reprodutibilidade dos Testes , Caminhada , Progressão da Doença
10.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298193

RESUMO

Disrupting variants in the DMD gene are associated with Duchenne or Becker muscular dystrophy (DMD/BMD) or with hyperCKemia, all of which present very different degrees of clinical severity. The clinical phenotypes of these disorders could not be distinguished in infancy or early childhood. Accurate phenotype prediction based on DNA variants may therefore be required in addition to invasive tests, such as muscle biopsy. Transposon insertion is one of the rarest mutation types. Depending on their position and characteristics, transposon insertions may affect the quality and/or quantity of dystrophin mRNA, leading to unpredictable alterations in gene products. Here, we report the case of a three-year-old boy showing initial skeletal muscle involvement in whom we characterized a transposon insertion (Alu sequence) in exon 15 of the DMD gene. In similar cases, the generation of a null allele is predicted, resulting in a DMD phenotype. However, mRNA analysis of muscle biopsy tissue revealed skipping of exon 15, which restored the reading frame, thus predicting a milder phenotype. This case is similar to very few others already described in the literature. This case further enriches our knowledge of the mechanisms perturbing splicing and causing exon skipping in DMD, helping to properly guide clinical diagnosis.


Assuntos
Distrofia Muscular de Duchenne , Oligonucleotídeos Antissenso , Humanos , Pré-Escolar , Oligonucleotídeos Antissenso/genética , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Músculo Esquelético/patologia , RNA Mensageiro/genética
11.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298068

RESUMO

Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The "reading-frame rule" states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several exons, new genome editing tools enable reading-frame restoration in DMD with the production of BMD-like dystrophins. However, not every truncated dystrophin with a significant internal loss functions properly. To determine the effectiveness of potential genome editing, each variant should be carefully studied in vitro or in vivo. In this study, we focused on the deletion of exons 8-50 as a potential reading-frame restoration option. Using the CRISPR-Cas9 tool, we created the novel mouse model DMDdel8-50, which has an in-frame deletion in the DMD gene. We compared DMDdel8-50 mice to C57Bl6/CBA background control mice and previously generated DMDdel8-34 KO mice. We discovered that the shortened protein was expressed and correctly localized on the sarcolemma. The truncated protein, on the other hand, was unable to function like a full-length dystrophin and prevent disease progression. On the basis of protein expression, histological examination, and physical assessment of the mice, we concluded that the deletion of exons 8-50 is an exception to the reading-frame rule.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Camundongos Endogâmicos CBA , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Éxons/genética , Deleção de Genes
12.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047330

RESUMO

Several clinical trials are working on drug development for Duchenne and Becker muscular dystrophy (DMD and BMD) treatment, and, since the expected increase in dystrophin is relatively subtle, high-sensitivity quantification methods are necessary. There is also a need to quantify dystrophin to reach a definitive diagnosis in individuals with mild BMD, and in female carriers. We developed a method for the quantification of dystrophin in DMD and BMD patients using spectral confocal microscopy. It offers the possibility to capture the whole emission spectrum for any antibody, ensuring the selection of the emission peak and allowing the detection of fluorescent emissions of very low intensities. Fluorescence was evaluated first on manually selected regions of interest (ROIs), proving the usefulness of the methodology. Later, ROI selection was automated to make it operator-independent. The proposed methodology correctly classified patients according to their diagnosis, detected even minimal traces of dystrophin, and the results obtained automatically were statistically comparable to the manual ones. Thus, spectral imaging could be implemented to measure dystrophin expression and it could pave the way for detailed analysis of how its expression relates to the clinical course. Studies could be further expanded to better understand the expression of dystrophin-associated protein complexes (DAPCs).


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Feminino , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/metabolismo
13.
Nervenarzt ; 94(6): 473-487, 2023 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-37221259

RESUMO

BACKGROUND: The possibilities in the field of molecular therapies of neuromuscular diseases have rapidly developed in recent years. First compounds are already available in clinical practice and numerous other substances are in advanced phases of clinical trials. This article gives an exemplary overview of the current state of clinical research in molecular therapies of neuromuscular diseases. It also gives a view into the near future of the clinical application, including the challenges. DISCUSSION: Using Duchenne muscular dystrophy (DMD) and myotubular myopathy as examples, the principles of gene addition in monogenetic skeletal muscle diseases, which are already manifested in childhood are described. In addition to initial successes, the challenges and setbacks hindering the approval and regular clinical application of further compounds are demonstrated. Furthermore, the state of current clinical research in Becker-Kiener muscular dystrophy (BMD) and the numerous forms of limb-girdle muscular dystrophy (LGMD) are summarized. Numerous new therapeutic approaches and a corresponding outlook are also shown for facioscapulohumeral muscular dystrophy (FSHD), Pompe disease, and myotonic dystrophy. CONCLUSION: Clinical research in the field of molecular therapy of neuromuscular diseases is one of the pacesetters of modern precision medicine; however, challenges need to be seen, jointly addressed and overcome in the future.


Assuntos
Distrofia Muscular de Duchenne , Doenças Neuromusculares , Humanos , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Doenças Neuromusculares/terapia , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Medicina de Precisão
14.
Artigo em Russo | MEDLINE | ID: mdl-37427816

RESUMO

Becker muscular dystrophy (BMD) is inherited X-linked neuromuscular disease characterized by progressive fatigue, atrophy, hypotonia and muscle weakness, that is predominantly located in muscles of pelvic girdle, femurs and lower leg. There are only singular studies at present showing the efficacy of different training programs for patients with muscular dystrophy, and there are no recommendations allowing to detect the optimal motor regimen, that is effective and safe for such patients. OBJECTIVE: To evaluate the efficacy of regular dynamic aerobic exercises in children with BMD, who are able to self-sustained movement. MATERIAL AND METHODS: The number of patients equal 13 with genetically confirmed BMD at the age from 8.9 to 15.9 years were examined. All patients took the course of exercise therapy for 4 months. The course was divided into 2 stages: the preparative (51-60% of the individual functional reserve of the heart (IFRH) with 6-8 repetitions of every exercise) and the training (61-70% of the IFRH with 10-12 repetitions of every exercise). The training duration was 60 min. The motor capabilities of patients were assessed by the 6-minute walk test, timed up & go test, MFM scale (sections D1, D2, D3) at the initial stage and during dynamic observation after 2 and 4 months. RESULTS: Statistically significant positive dynamics of indicators was revealed. The average distance in the 6-minute walk test at the initial stage was 526.9±12.7 m, after 4 months was 545.2±13.0 m (p<0.05). The average uplift time at the initial stage was 3.9±0.2 s, after 2 months was 3.5±0.2 s (p<0.05). The average running time for the distance of 10 m initially was 4.3±0.1 s, after 2 months was 3.8±0.1 s (p<0.05), after 4 months was 3.8±0.1 s (p<0.05). There was some positive dynamics in the evaluation of uplift and movement capabilities (D1) by the MFM scale: initially the indicator was 87.7±1.5%, after 2 months - 93.4±1.4% (p<0.001), after 4 months - 94.5±1.3% (p<0.001). Clinically significant adverse effects were not registered during the training courses. CONCLUSION: Aerobic trainings without weight combined with exercises on a cycle machine for 4 months allow to improve movement capabilities and are not characterized by clinically significant adverse effects in children with BMD.


Assuntos
Distrofia Muscular de Duchenne , Criança , Humanos , Adolescente , Distrofia Muscular de Duchenne/terapia , Exercício Físico , Terapia por Exercício , Caminhada , Extremidade Inferior
15.
Hum Mutat ; 43(4): 511-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165973

RESUMO

DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Humanos , Íntrons/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Sítios de Splice de RNA
16.
J Cell Mol Med ; 26(17): 4678-4685, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880500

RESUMO

Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle-specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age-matched healthy controls. We found a significant upregulation of serum miR-1, miR-133a, miR-133b and miR-206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut-off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR-133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR-133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.


Assuntos
MicroRNA Circulante , MicroRNAs , Distrofia Muscular de Duchenne , Biomarcadores , Progressão da Doença , Humanos , MicroRNAs/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
17.
Neuropathol Appl Neurobiol ; 48(3): e12785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34847621

RESUMO

AIMS: Dystrophin, the protein product of the DMD gene, plays a critical role in muscle integrity by stabilising the sarcolemma during contraction and relaxation. The DMD gene is vulnerable to a variety of mutations that may cause complete loss, depletion or truncation of the protein, leading to Duchenne and Becker muscular dystrophies. Precise and reproducible dystrophin quantification is essential in characterising DMD mutations and evaluating the outcome of efforts to induce dystrophin through gene therapies. Immunofluorescence microscopy offers high sensitivity to low levels of protein expression along with confirmation of localisation, making it a critical component of quantitative dystrophin expression assays. METHODS: We have developed an automated and unbiased approach for precise quantification of dystrophin immunofluorescence in muscle sections. This methodology uses microscope images of whole-tissue sections stained for dystrophin and spectrin to measure dystrophin intensity and the proportion of dystrophin-positive coverage at the sarcolemma of each muscle fibre. To ensure objectivity, the thresholds for dystrophin and spectrin are derived empirically from non-sarcolemmal signal intensity within each tissue section. Furthermore, this approach is readily adaptable for measuring fibre morphology and other tissue markers. RESULTS: Our method demonstrates the sensitivity and reproducibility of this quantification approach across a wide range of dystrophin expression in both dystrophinopathy patient and healthy control samples, with high inter-operator concordance. CONCLUSION: As efforts to restore dystrophin expression in dystrophic muscle bring new potential therapies into clinical trials, this methodology represents a valuable tool for efficient and precise analysis of dystrophin and other muscle markers that reflect treatment efficacy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Biópsia , Distrofina/análise , Imunofluorescência , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Reprodutibilidade dos Testes
18.
Muscle Nerve ; 65(3): 326-333, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918368

RESUMO

INTRODUCTION/AIMS: Becker muscular dystrophy (BMD) is characterized by variable disease severity and progression, prompting the identification of biomarkers for clinical trials. We used data from an ongoing phase II study to provide a comprehensive characterization of a cohort of patients with BMD, and to assess correlations between histological and magnetic resonance imaging (MRI) markers with muscle function and strength. METHODS: Eligible patients were ambulatory males with BMD, aged 18 to 65 years (200 to 450 meters on 6-minute walk test). The following data were obtained: function test results, strength, fat-fraction quantification using chemical shift-encoded MRI (whole thigh and quadriceps), and fibrosis and muscle fiber area (MFA) of the brachial biceps. RESULTS: Of 70 patients screened, 51 entered the study. There was substantial heterogeneity between patients in muscle morphology (histology and MRI), with high fat replacement. Total fibrosis correlated significantly and mostly moderately with all functional endpoints, including both upper arm strength assessments (left and right elbow flexion rho -.574 and -.588, respectively [both P < .0001]), as did MRI fat fraction (whole thigh and quadriceps), for example, with four-stair-climb velocity -.554 and -.550, respectively (both P < .0001). Total fibrosis correlated significantly and moderately with both MRI fat fraction assessments (.500 [P = .0003] and .423 [.0024], respectively). DISCUSSION: In this BMD cohort, micro- and macroscopic morphological muscle parameters correlated moderately with each other and with functional parameters, potentially supporting the use of MRI fat fraction and histology as surrogate outcome measures in patients with BMD, although additional research is required to validate this.


Assuntos
Distrofia Muscular de Duchenne , Adolescente , Adulto , Idoso , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Coxa da Perna , Adulto Jovem
19.
Muscle Nerve ; 66(1): 63-70, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474226

RESUMO

INTRODUCTION/AIMS: Becker muscular dystrophy (BMD) is an X-linked disease leading to muscle wasting and weakness. The decrease in lean body mass (LBM) in Duchenne muscular dystrophy, has shown correlation with loss of muscle function and bone density (BD). Myokines (including irisin) are hormones secreted by skeletal muscle that allow crosstalk between muscle and bone. The present study analyzed body composition and circulating myokine levels in a cohort of BMD patients; moreover, the association between dual energy X-ray absorptiometry (DXA) parameters, functional motor assessments, and myokine levels was investigated. METHODS: All patients underwent DXA, blood samples for myokine assays, and functional motor assessments. A group of healthy controls (HCs) was also included. RESULTS: Thirty BMD patients, median age at evaluation 36.0 y [26.0-41.0], were included. Twenty-nine patients underwent whole-body DXA. Median value of total body Z-score was -0.70. The prevalence of low skeletal muscle mass defined as appendicular skeletal muscle mass index (ASMMI) < 7.59 kg/m2 was 83%. Irisin levels were significantly lower in BMD compared to HCs (p = .03). All DXA parameters showed significant correlation with the functional motor assessments, in particular the h2 -standardized lean mass lower limb index (p = .0006); h2 -standardized total fat mass showed negative correlations with North Star Ambulatory Assessment and 6 min walk test (p = .03). DISCUSSION: DXA is a useful tool to evaluate body composition in BMD patients; the decrease in BD and LBM is associated with a reduction of motor function in BMD.


Assuntos
Distrofia Muscular de Duchenne , Absorciometria de Fóton , Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Fibronectinas , Humanos , Músculo Esquelético , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico por imagem
20.
Neurol Sci ; 43(1): 243-253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34731335

RESUMO

INTRODUCTION: Becker muscular dystrophy (BMD) is a genetic and progressive neuromuscular disease caused by mutations in the dystrophin gene with no available cure. A case report and comprehensive review of BMD cases aim to provide important clues for early diagnosis and implications for clinical practice. Genes and pathways identified from microarray data of muscle samples from patients with BMD help uncover the potential mechanism and provide novel therapeutic targets for dystrophin-deficient muscular dystrophies. METHODS: We describe a BMD family with a 10-year-old boy as the proband and reviewed BMD cases from PubMed. Datasets from the Gene Expression Omnibus database were downloaded and integrated with the online software. RESULTS: The systematic review revealed the clinical manifestations and mutation points of the dystrophin gene. Gene ontology analysis showed that extracellular matrix organization and extracellular structure organization with enrichment of upregulated genes coexist in three datasets. We present the first report of TUBA1A involvement in the development of BMD/Duchenne muscular dystrophy (DMD). DISCUSSION: This study provides important implications for clinical practice, uncovering the potential mechanism of the progress of BMD/DMD, and provided new therapeutic targets.


Assuntos
Distrofia Muscular de Duchenne , Criança , Família , Expressão Gênica , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa