Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Fluoresc ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186139

RESUMO

In this work, a series of dibenzimidazole derivatives 1-4, act as highly reversible colorimetric and fluorescent pH chemosensor, were designed and synthesized. Excellent reversible pH response of these sensors could be found by a specific pH change through obvious fluorescent color changes. The response is not affected by common cations (including Al3+, Cu2+, Ca2+, Cd2+, Co2+, Cr3+, Mg2+, Na+, K+, Ni2+, Pb2+ and Zn2+) and anions (including F-, Cl-, Br-, I-, ClO4-, H2PO4-, HSO4-, HCO3- and CH3COO-). Notably, these sensors can be reused more than 10 times without losing functionality. Unlike previous reports, the distinct properties of 1-4 are attributed to the varied link groups. Based on comprehensive experimental data and mechanistic analyses, it is concluded that sensors 1-4 are promising candidates for use as highly reversible "on-off-on" fluorescence switches under precise pH control.

2.
Mol Divers ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083219

RESUMO

Helminthiasis, affecting billions globally, poses a significant health concern, especially in impoverished regions with inadequate sanitation. The intricate anatomical complexity of helminths requires specialized treatment approaches. There is currently no effective vaccine against helminth infections. Anthelmintics, crucial for combating these infections, target neuromuscular functions in parasites without harming the host. However, the emergence of resistance to existing anthelmintics, notably benzimidazoles, presents a growing global challenge. This review delves into the structure-activity relationship of previously synthesized core anthelmintic scaffolds-Benzimidazole, coumarin, pyrazoline, triazole, and others-to elucidate their promising anthelmintic activities. Understanding the structure-activity relationship of these novel benzimidazole derivatives, Coumarin derivatives, and others is crucial in designing potent anthelmintics, overcoming resistance, and optimizing efficacy to combat the escalating global burden of helminth infections. In the present review, we cover recently studied compounds (from the year 2019 to till date) which have promising anthelmintic activity. This review will be useful for the pharmacology and medicinal chemistry researchers working in the area anthelmintics with various scaffolds like aminobenzothiazole, benzimidazole, benzothiazole, coumarin, chromene, spiroketal, pyrazoline, triazole, etc. to design novel potent anthelmintic compound.

3.
Bioorg Med Chem Lett ; 95: 129469, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689214

RESUMO

Blocking the PI3K/Akt pathway has been widely recognized as an attractive cancer therapeutic strategy because of its crucial role in cell growth and survival. This study presents the synthesis of 24 new 5-Methoxy-6-substituted-1H-benzimidazole derivatives (4a-4x) and the evaluation of their anti-proliferative activities against A549, Siha, MCF-7, HepG2, PC3, and HCT-116 tumor cell lines through MTT assay. Compound 4w exhibited superior anti-tumor activity against the A549 cells with IC50 values of 1.55 ± 0.18 µM, and better than the BKM120 (IC50 = 9.75 ± 1.25 µM). Further studies indicated that 4w could induce G0/G1 phase arrest, cell apoptosis, and down-regulate expression of p-PI3K and p-Akt. These results indicate that 4w could be served as a lead compound of PI3K inhibitor for the treatment of human lung cancers.

4.
Mol Divers ; 27(4): 1703-1712, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36065037

RESUMO

Bcl-2, an anti-apoptotic protein, is a well-known and appealing cancer therapy target. Novel series of benzimidazole derivatives were synthesized and tested for their activity as Bcl-2 inhibitors on T98G glioblastoma, PC3 prostate, MCF-7 breast, and H69AR lung cancer cells. MTT assay was used to evaluate the cytotoxic effect. PI Annexin V Apoptosis Detection Kit was used to detect apoptosis. Expression levels of the Bcl-2 protein were examined by the Western blot analysis and qRT-PCR. All synthesized benzimidazole derivatives exhibited a cytotoxic effect on cancer cells with IC50 values in the range of 25.2-88.2 µg/mL. Among all derivatives, compounds C1 and D1 demonstrated a higher cytotoxic effect on cancer cells with IC50 values < 50 µg/mL, while a lower cytotoxic effect against human embryonic kidney cells with IC50 values of > 100 µg/mL. C1 and D1 caused a significant increase in the percentage of apoptotic cells in all types of cancer cell cells and both Bcl-2 mRNA and protein levels were significantly reduced. These results suggest that the novel benzimidazole derivatives may be candidates for apoptosis-inducing agents in cancer treatment by targeting anti-Bcl-2 proteins in cancer cells.


Assuntos
Antineoplásicos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose , Benzimidazóis/farmacologia , Proliferação de Células
5.
Chem Biodivers ; 20(6): e202300315, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37246487

RESUMO

Citral (1a), a bioactive component of Cymbopogon citratus (lemongrass) could be isolated and semi-synthetic analogs synthesized with improved therapeutic properties. Herein we first report describes citral (1a) as a primary material for the synthesis of benzimidazole derivatives between various o-phenylenediamines (2a-l) in the presence of Diisopropylethylamine (DIPEA) as a commercially available environmentally benign base, ethanol as a green solvent and the yield of all benzimidazole derivatives (3a-l) was between 68-76 %; The semi-synthetically prepared benzimidazole derivatives (3a-l) were assessed for their anti-bacterial and anti-fungal properties. The benzimidazole compounds (3a-b, and 3g-j) exhibit good anti-microbial activity. In addition, in silico study was carried out to determine the specific binding affinity of the diamine halogen substituted benzimidazole derivatives to the specific target proteins. In silico analysis revealed a high correlation between docking results and experimental results. Finally, benzimidazole demonstrated significant antibacterial and antifungal activity. Zebrafish embryos were subjected to In vivo toxicological test found that all of the benzimidazole compounds (3a-l) were non-toxic and had low embryotoxicity after 96 h, with an LC50 of 36.425 µg, which could facilitate the design of novel antimicrobial agents using a cost-effective method.


Assuntos
Anti-Infecciosos , Peixe-Zebra , Animais , Aldeídos Monoterpenos e Cetonas , Diaminas , Ciclização , Monoterpenos , Aldeídos , Anti-Infecciosos/química , Antibacterianos/farmacologia , Benzimidazóis , Estresse Oxidativo , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
6.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445897

RESUMO

The use of alternative energy sources, such as microwaves (MW) or ultrasounds (US), and their mutual cross-combination have been widely described in the literature in the development of new synthetic methodologies in organic and medicinal chemistry. In this review, our attention is focused on representative examples, reported in the literature in the year range 2013-2023 of selected N-containing bicyclic heterocycles, with the aim to highlight the advantages of microwave- and ultrasound-assisted organic synthesis.


Assuntos
Micro-Ondas , Nitrogênio , Técnicas de Química Sintética , Ultrassonografia , Química Farmacêutica
7.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838567

RESUMO

The Lassa virus (LASV) causes Lassa fever, a highly infectious and lethal agent of acute viral hemorrhagic fever. At present, there are still no effective treatments available, creating an urgent need to develop novel therapeutics. Some benzimidazole compounds targeting the arenavirus envelope glycoprotein complex (GPC) are promising inhibitors of LASV. In this study, we synthesized two series of LASV inhibitors based on the benzimidazole structure. Lentiviral pseudotypes bearing the LASV GPC were established to identify virus entry inhibitors. Surface plasmon resonance (SPR) was further used to verify the binding activities of the potential compounds. Compounds 7d-Z, 7h-Z, 13c, 13d, and 13f showed relatively excellent antiviral activities with IC50 values ranging from 7.58 to 15.46 nM and their SI values above 1251. These five representative compounds exhibited stronger binding affinity with low equilibrium dissociation constants (KD < 8.25 × 10-7 M) in SPR study. The compound 7h-Z displayed the most potent antiviral activity (IC50 = 7.58 nM) with a relatively high SI value (2496), which could be further studied as a lead compound. The structure-activity relationship indicated that the compounds with lipophilic and spatially larger substituents might possess higher antiviral activity and a much larger safety margin. This study will provide some good guidance for the development of highly active compounds with a novel skeleton against LASV.


Assuntos
Arenavirus , Febre Lassa , Humanos , Vírus Lassa , Febre Lassa/tratamento farmacológico , Antivirais/farmacologia , Benzimidazóis/farmacologia
8.
J Sci Food Agric ; 103(6): 2824-2837, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641547

RESUMO

BACKGROUND: Tyrosinase is the key enzyme involved in enzymatic browning of plant-derived foods. Inhibition of tyrosinase activity contributes to the control of food browning. Due to safety regulations or other issues, most identified tyrosinase inhibitors are not suitable for practical use. Therefore, it is necessary to search for novel tyrosinase inhibitors. In this study, the anti-tyrosinase activity and mechanism of albendazole and 2-(2-aminophenyl)-1H-benzimidazole (2-2-A-1HB) were investigated through ultraviolet-visible absorption spectroscopy, fluorescence spectra, molecular docking, and molecular dynamic (MD) simulation. The anti-browning effect of albendazole on fresh-cut apples was then elucidated. RESULTS: Albendazole and 2-2-A-1HB were both efficient tyrosinase inhibitors with IC50 of 51 ± 1.5 and 128 ± 1.3 µmol L-1 , respectively. Albendazole suppressed tyrosinase non-competitively and formed tyrosinase-albendazole complex statically. Hydrogen bond and hydrophobic interaction were major driving forces in stabilizing the tyrosinase-albendazole complex. While 2-2-A-1HB inhibited the enzyme competitively and quenched its intrinsic fluorescence through a static mechanism, it generated strong binding affinity with tyrosinase through hydrophobic interaction. MD simulations further validated that albendazole/2-2-A-1HB could form stable complexes with tyrosinase and loosened its basic framework structure, leading to a change in secondary structure and conformation. In addition, albendazole could delay the browning of fresh-cut apples by inhibiting the activity of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase, and reducing the oxidation of phenolic compounds. CONCLUSION: This research might provide a deep view of tyrosinase inhibition by benzimidazole derivatives and a theoretical basis for developing albendazole as a potential fresh-keeping agent. © 2023 Society of Chemical Industry.


Assuntos
Malus , Monofenol Mono-Oxigenase , Albendazol/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Malus/química , Benzimidazóis/farmacologia , Inibidores Enzimáticos/química
9.
Rev Invest Clin ; 75(3): 93-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441771

RESUMO

Synthetic opioids have played a significant role in the current opioid crisis in the United States (U.S.) and Canada and are a matter of concern worldwide. New psychoactive opioids (NPOs) are classified in the internationally recognized new psychoactive substances (NPSs) category. This group comprises compounds that may have been synthesized decades ago but appeared only recently in the illicit drug market. Such is the case of fentanyl, fentanyl analogs, and non-fentanyl opioids. Most NPOs have effects similar to morphine, including euphoria and analgesia, and can produce fatal respiratory depression. Here, we present an overview of the systemic and molecular effects of main NPOs, their classification, and their pharmacological properties. We first review the fentanyl group of NPOs, including the four compounds of clinical use (fentanyl, alfentanil, sufentanil, and remifentanil) and the veterinary drug carfentanil. We also provide essential information on non-medical fentanyl analogs and other synthetic opioids such as brorphine, etonitazene, and MT-45, used as adulterants in commonly misused drugs. This paper also summarizes the scarce literature on the use of NPOs in Mexico. It concludes with a brief review of the challenges to prevention and treatment posed by NPOs and some recommendations to face them.


Assuntos
Analgésicos Opioides , Humanos , Estados Unidos , Analgésicos Opioides/efeitos adversos , Remifentanil , Canadá , México
10.
Biochem Biophys Res Commun ; 623: 17-22, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868068

RESUMO

Inhibition of the bromodomain of the CREB (cyclic-AMP response element-binding protein) binding protein (CBP) is a particularly promising new therapeutic approach for cancer. Benzimidazole derivatives CCS1477 and its analogues (8 and 9) are highly potent and selective CBP bromodomain inhibitors, with Kd values of 26.4, 37.0, and 34.3 nM in ITC assay, respectively. Among these compounds, CCS1477 is undergoing phase Ib/IIa clinical trials for the treatment of various cancers. Thus, we determined the co-crystal structures of CCS1477 and its analogues in complex with CBP bromodomain and revealed the detailed binding modes. Furthermore, overlapping with other reported co-crystal structures allowed us to identify that interaction with Arg1173, LPF shelf, and ZA channel was critical for keeping strong biological activity and selectivity. Collectively, this study provided a structural basis for CBP bromodomain inhibitors design.


Assuntos
Proteína de Ligação a CREB , Inibidores Enzimáticos , Proteína de Ligação a CREB/metabolismo , Ligação Proteica , Domínios Proteicos
11.
Chemistry ; 28(6): e202103642, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34878646

RESUMO

Mesoporous silica nanoparticles (MSNs) functionalized with benzimidazole-derived fluorescent molecules (DHBM) are fabricated via a feasible interfacial superassembly strategy for the highly sensitive and selective detection of Cu2+ . DHBM-MSN exhibits an obvious quenching effect on Cu2+ in aqueous solutions, and the detection limit can be as low as 7.69×10-8  M. The DHBM-MSN solid-state sensor has good recyclability, and the silica framework can simultaneously improve the photostability of DHBM. Two mesoporous silica nanoparticles with different morphologies were specially designed to verify that nanocarriers with different morphologies do not affect the specific detectionability. The detection mechanism of the fluorescent probe was systematically elucidated by combining experimental results and density function theory calculations. Moreover, the detection system was successfully applied to detect Cu2+ in bovine serum, juice, and live cells. These results indicate that the DHBM-MSN fluorescent sensor holds great potential in practical and biomedical applications.


Assuntos
Nanopartículas , Dióxido de Silício , Benzimidazóis , Cobre , Corantes Fluorescentes
12.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743039

RESUMO

Developing new, smart drugs with the anticancer activity is crucial, especially for cancers, which cause the highest mortality in humans. In this paper we describe a series of coordination compounds with the element of health, zinc, and bioactive ligands, benzimidazole derivatives. By way of synthesis we have obtained four compounds named C1, C2, C4 and C4. Analytical analyses (elemental analysis (EA), flame atomic absorption spectrometry (FAAS)), spectroscopic (Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS)) and thermogravimetric (TG) methods and the definition of crystal structures were used to explore the nature of bonding and to elucidate the chemical structures. The collected analytical data allowed the determination of the stoichiometry in coordination compounds, thermal stability, crystal structure and way of bonding. The cytotoxicity effect of the new compounds as a potential antitumor agent on the glioblastoma (T98G), neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell lines and human normal skin fibroblasts (CCD-1059Sk) was also determined. Cell viability was determined by the MTT assay. The results obtained confirmed that conversion of ligands into the respective metal complexes significantly improved their anticancer properties. The complexes were screened for antibacterial and antifungal activities. The ADME technique was used to determine the physicochemical and biological properties.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química , Compostos de Zinco
13.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558035

RESUMO

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Assuntos
Antiprotozoários , Giardia lamblia , Parasitos , Trichomonas vaginalis , Animais , Humanos , Metronidazol/farmacologia , Antiparasitários/farmacologia , Benzimidazóis/farmacologia , Antiprotozoários/farmacologia
14.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432108

RESUMO

As a result of the synthesis, three new solids, cobalt (II) coordination compounds with benzimidazole derivatives, and chlorides were obtained. The ligands that were used in the synthesis were specially synthesized and were commercially unavailable. During the synthesis, a single crystal of the complex with the L1 ligand was obtained and the crystal structure was refined. All coordination compounds were characterized by elemental analysis, infrared spectroscopy, and thermogravimetric analysis. All the obtained data allowed one to determine the formulas of the new compounds, as well as to determine the method of metal-ligand coordination. Thermal analysis allowed to know the temperature stability of the compounds, solids intermediate and final products of pyrolysis. Additionally, volatile decomposition and fragmentation products have been identified. The toxicity of the compounds and their bioavailability were determined using in silico methods. By predicting activity on cell lines, the potential use of compounds as chemotherapeutic agents has been specified. The blood-brain barrier crossing and the gastrointestinal absorption were defined. Pharmaceutical biodistribution was also simulated.


Assuntos
Benzimidazóis , Cobalto , Cobalto/toxicidade , Cobalto/química , Ligantes , Distribuição Tecidual , Preparações Farmacêuticas , Benzimidazóis/química
15.
J Recept Signal Transduct Res ; 41(2): 153-158, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32752909

RESUMO

MAP kinase is one of the important targets in the treatment of osteoarthritis, inflammation and cancer. Many p38 inhibitors with diverse chemical structures and modes of protein interaction have been designed on the basis of their ability to compete with ATP site or allosteric site for binding to MAP Kinase. This study involves the molecular docking of benzimidazoles containing 4H-chrome-4-one derivatives as potent inhibitors of the MAP kinase enzyme. The compounds were computationally designed and optimized with the molecular docking to investigate the interactions between the target compounds and the amino acid residues of the MAP Kinase. The inhibitory activities against human MAP kinase enzyme were investigated by molecular docking using the Autodock and discovery studio software. All the designed compounds were shown good binding energy when compared with the binging energies of standard drug Imatinib (anti-cancer). Among all the designed compounds, compound D1 and D6 have higher binding energy values when compared to standard drug. Here we also studied the molecular properties of designed compound using Molinspiration software. Further, we planned to synthesis these benzimidazole derivatives and screen for in-vitro and in-vivo of anti-cancer activity.


Assuntos
Benzimidazóis/química , Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Proteínas Quinases p38 Ativadas por Mitógeno/química , Trifosfato de Adenosina/química , Sítio Alostérico/efeitos dos fármacos , Benzimidazóis/uso terapêutico , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mesilato de Imatinib , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/ultraestrutura
16.
Bioorg Med Chem ; 48: 116418, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563877

RESUMO

Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling pathway and has been validated as a therapeutic target for type 2 diabetes. A wide variety of scaffolds have been included in the structure of PTP1B inhibitors, one of them is the benzimidazole nucleus. Here, we report the design and synthesis of a new series of di- and tri- substituted benzimidazole derivatives including their kinetic and structural characterization as PTP1B inhibitors and hypoglycemic activity. Results show that compounds 43, 44, 45, and 46 are complete mixed type inhibitors with a Ki of 12.6 µM for the most potent (46). SAR type analysis indicates that a chloro substituent at position 6(5), a ß-naphthyloxy at position 5(6), and a p-benzoic acid attached to the linker 2-thioacetamido at position 2 of the benzimidazole nucleus, was the best combination for PTP1B inhibition and hypoglycemic activity. In addition, molecular dynamics studies suggest that these compounds could be potential selective inhibitors from other PTPs such as its closest homologous TCPTP, SHP-1, SHP-2 and CDC25B. Therefore, the compounds reported here are good hits that provide structural, kinetic, and biological information that can be used to develop novel and selective PTP1B inhibitors based on benzimidazole scaffold.


Assuntos
Benzimidazóis/farmacologia , Glicemia/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Teste de Tolerância a Glucose , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade
17.
Arch Pharm (Weinheim) ; 354(8): e2100076, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33872394

RESUMO

New benzimidazole derivatives were synthesized and their structures were characterized by spectroscopic and microanalysis techniques. The cytotoxic properties of ten benzimidazole derivatives, five of which were synthesized in our previous studies, were determined against the lung cancer cell line, A549, and the healthy lung epithelial cell line, BEAS-2B. Among the ten compounds tested, based on the 72-h incubation results, compound 12 was the most cytotoxic against the A549 cell line, whereas against the BEAS-2B cell line, it was as cytotoxic as cisplatin. The IC50 values of compound 12 were 3.98 and 2.94 µg/ml for A549 and BEAS-2B cells, respectively. The cisplatin values were 6.75 and 2.75 µg/ml for A549 and BEAS-2B cells, respectively. Compounds 10, 8, 7, and 13 showed toxic effects against A549 cells, but were less toxic against BEAS-2B cells than cisplatin. The antimicrobial activity of these compounds against pathogenic bacteria and yeasts was also evaluated based on their minimum inhibitory concentration (MIC) values. The compounds, except 12 and 13, generally showed higher antimicrobial activity against yeasts, compared with bacteria. Compound 12 showed better activity against Pseudomonas aeruginosa and Staphylococcus aureus than against Escherichia coli. Compounds 7, 8, and 11 were the most effective ones against the microorganisms, and yeasts were highly sensitive to these compounds with MIC values of 25-100 µg/ml.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Células A549 , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Linhagem Celular , Cisplatino/farmacologia , Células Epiteliais/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Pulmão/citologia , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948408

RESUMO

Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 µM and 82 µM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.


Assuntos
Antiprotozoários/farmacologia , Arginase/antagonistas & inibidores , Benzimidazóis/farmacologia , Leishmania mexicana/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/química , Arginase/metabolismo , Benzimidazóis/química , Linhagem Celular , Descoberta de Drogas , Humanos , Leishmania mexicana/enzimologia , Leishmania mexicana/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Modelos Moleculares , Proteínas de Protozoários/metabolismo
19.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443347

RESUMO

α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 µM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 µM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.


Assuntos
Amidas/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Sais/química , Benzimidazóis/metabolismo , Domínio Catalítico , Inibidores de Glicosídeo Hidrolases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
20.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854402

RESUMO

In this study, a series of compounds derived from 4-methoxy-1H-isoindole-1,3(2H)-dione, potential ligands of phosphodiesterase 10A and serotonin receptors, were investigated as potential antipsychotics. A library of 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives with various amine moieties was synthesized and examined for their phosphodiesterase 10A (PDE10A)-inhibiting properties and their 5-HT1A and 5-HT7 receptor affinities. Based on in vitro studies, the most potent compound, 18 (2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione), was selected and its safety in vitro was evaluated. In order to explain the binding mode of compound 18 in the active site of the PDE10A enzyme and describe the molecular interactions responsible for its inhibition, computer-aided docking studies were performed. The potential antipsychotic properties of compound 18 in a behavioral model of schizophrenia were also investigated.


Assuntos
Antipsicóticos , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/química , Receptor 5-HT1A de Serotonina/química , Receptores de Serotonina/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa