Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 20: 2114-2128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224232

RESUMO

Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.

2.
Chemphyschem ; 24(5): e202200504, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342161

RESUMO

The scope of Bergman cyclization is expanded computationally by exploring the cyclization in inorganic B, N substituted derivative. This substitution has introduced polarity into the transition state, which resulted in dramatic lowering of the activation barrier. Natural charge distribution throughout the reaction profile has ascertained this hypothesis. Single B and N atom substitution at 1 and 6 terminal positions lowers the activation barrier by almost half of the original value which becomes even lower in the complete B, N analogue. The parent Bergman and single B, N substituted products were characterized by significant biradical character while the complete B, N substituted analogue was characterized by significant zwitterionic character. Reduction in electron delocalization is also observed in the complete B, N substituted analogue.

3.
Macromol Rapid Commun ; 44(24): e2300440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877520

RESUMO

Crosslinking chemistries occupy an important position in polymer modification with a particular importance when triggered in response to external stimuli. Enediyne (EDY) moieties are used as functional entities in this work, known to undergo a pericyclic Bergman cyclization (BC) to induce a triggered crosslinking of polyurethanes (PU) via the intermediately formed diradicals. Diamino-EDYs, where the distance between the enyne-moieties is known to be critical to induce a BC, are placed repetitively as main-chain structural elements in isophorone-based PUs to induce reinforcement upon heating, compression, or stretching. A 7-day compression under room temperature results in a ≈69% activation of the BC, together with the observation of an increase in tensile strength by 62% after 25 stretching cycles. The occurrence of BC is further proven by the decreased exothermic values in differential scanning calorimetry, together with characteristic peaks of the formed benzene moieties via IR spectroscopy. Purely heat-induced crosslinking contributes to 191% of the maximum tensile strength in comparison to the virgin PU. The BC herein forms an excellent crosslinking strategy, triggered by heat or force in PU materials.


Assuntos
Polímeros , Poliuretanos , Poliuretanos/química , Ciclização , Temperatura Alta , Enedi-Inos/química
4.
Molecules ; 27(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36144808

RESUMO

The scope and limitations of the Nicholas-type cyclization for the synthesis of 10-membered benzothiophene-fused heterocyclic enediynes with different functionalities were investigated. Although the Nicholas cyclization through oxygen could be carried out in the presence of an ester group, the final oxaenediyne was unstable under storage. Among the N-type Nicholas reactions, cyclization via an arenesulfonamide functional group followed by mild Co-deprotection was found to be the most promising, yielding 10-membered azaendiynes in high overall yields. By contrast, the Nicholas cyclization through the acylated nitrogen atom did not give the desired 10-membered cycle. It resulted in the formation of a pyrroline ring, whereas cyclization via an alkylated amino group resulted in a poor yield of the target 10-membered enediyne. The acylated 4-aminobenzenesulfonamide nucleophilic group was found to be the most convenient for the synthesis of functionalized 10-membered enediynes bearing a clickable function, such as a terminal triple bond. All the synthesized cyclic enediynes exhibited moderate activity against lung carcinoma NCI-H460 cells and had a minimal effect on lung epithelial-like WI-26 VA4 cells and are therefore promising compounds in the search for novel antitumor agents that can be converted into conjugates with tumor-targeting ligands.


Assuntos
Enedi-Inos , Ésteres , Ciclização , Nitrogênio , Oxigênio , Sulfanilamida
5.
Proc Natl Acad Sci U S A ; 114(36): E7405-E7414, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28760964

RESUMO

A series of M(PyED)·X (X = 2Cl-, SO42-) pyridine-metalloenediyne complexes [M = Cu(II), Fe(II), or Zn(II)] and their independently synthesized, cyclized analogs have been prepared to investigate their potential as radical-generating DNA-damaging agents. All complexes possess a 1:1 metal-to-ligand stoichiometry as determined by electronic absorption spectroscopy and X-ray diffraction. Solution structural analysis reveals a pπ Cl [Formula: see text] Cu(II) LMCT (22,026 cm-1) for Cu(PyED)·2Cl, indicating three nitrogens and a chloride in the psuedo-equatorial plane with the remaining pyridine nitrogen and solvent in axial positions. EPR spectra of the Cu(II) complexes exhibit an axially elongated octahedron. This spectroscopic evidence, together with density functional theory computed geometries, suggest six-coordinate structures for Cu(II) and Fe(II) complexes and a five-coordinate environment for Zn(II) analogs. Bergman cyclization via thermal activation of these constructs yields benzannulated product indicative of diradical generation in all complexes within 3 h at 37 °C. A significant metal dependence on the rate of the reaction is observed [Cu(II) > Fe(II) > Zn(II)], which is mirrored in in vitro DNA-damaging outcomes. Whereas in situ chelation of PyED leads to considerable degradation in the presence of all metals within 1 h under hyperthermia conditions, Cu(II) activation produces >50% compromised DNA within 5 min. Additionally, Cu(II) chelated PyED outcompetes DNA polymerase I to successfully inhibit template strand extension. Exposure of HeLa cells to Cu(PyBD)·SO4 (IC50 = 10 µM) results in a G2/M arrest compared with untreated samples, indicating significant DNA damage. These results demonstrate metal-controlled radical generation for degradation of biopolymers under physiologically relevant temperatures on short timescales.


Assuntos
Replicação do DNA/efeitos dos fármacos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Quelantes , Cristalografia por Raios X , Ciclização , Dano ao DNA , Desenho de Fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/farmacologia , Células HeLa , Humanos , Ligantes , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia
6.
Mol Pharm ; 15(3): 768-797, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303588

RESUMO

Spatial and temporal control over DNA cleavage by photoactivated enediynes can be complemented by additional factors such as the release of internal strain, chelation, pH changes, intramolecular H-bonds, and substituent effects. This review presents design and reactivity of photoactivated enediynes/enynes and analyses the chemical, biological, and photophysical challenges in their applications.


Assuntos
Antibióticos Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Enedi-Inos/farmacologia , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efeitos da radiação , Antibióticos Antineoplásicos/uso terapêutico , Ciclização/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , DNA de Neoplasias/química , DNA de Neoplasias/efeitos da radiação , Enedi-Inos/química , Enedi-Inos/efeitos da radiação , Enedi-Inos/uso terapêutico , Humanos , Luz , Lisina/química , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Neoplasias/genética
7.
Polyhedron ; 103(A): 187-195, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-28931964

RESUMO

One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M(QuiED)·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu(QuiED)·2Cl and Cu (QuiBD)·2Cl denotes an axially-elongated tetragonal octahedron (g║ > g⊥ > 2.0023) with a dx2-y2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm -1, indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal-ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents.

8.
Chemistry ; 20(49): 16360-76, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25336292

RESUMO

The [2.2]paracyclophane moiety is used as a spacer to connect the ends of a hex-3-ene-1,5-diyne unit, a π-system that on thermolysis usually cycloaromatizes to a benzene ring (Bergman cyclization). For the preparation of the pseudo-geminally-bridged system 9, the diacetylene 3 was chain-extended to the diol 16, which after conversion to the pseudo-geminal dibromide 17 was ring-closed by treatment with LiHMDS/HMPA to the [2.2]paracyclophane enediyne 9. Whereas the McMurry coupling of the pseudo-ortho bisaldehyde 24 resulted in the formation of the hexadienyne-bridged cyclophane 27, the pseudo-ortho-bridged hydrocarbon 11 was obtained by preparing first the diol 28 from 24, converting the latter into the dioxolane 29, which in the last step furnished the olefin 11 by treatment with Tf2 O/EtN(iPr)2 . The authentic Bergman product 10 of the pseudo-gem-bridged hexenediyne 9 was synthesized by a conventional sequence starting from the ethynyl formyl substrate 18. Since the pseudo-ortho-enediyne-bridged hydrocarbon 11 is thermally labile, its benzannelated derivate 34 was prepared. No classical Bergman cyclization reactions could be observed for any of the [2.2]paracyclophane-bridged hexenediynes prepared here. In the pseudo-gem-series the fulvenes 14 and 15 were the only products that could be identified under thermal conditions (McMurry coupling); the benzannelated substrate 34 gave the benzofulvene-bridged cyclophane 36 on photolysis. Bergman cyclizations yielding fulvene derivatives are extremely rare. The mechanism of the cyclization of 9 and 34 is discussed, using compliance constants. The structure assignments of the hydrocarbons synthesized in this study are based on spectroscopic studies as well as X-ray structural analyses for 9, 10, 11, 27, and 34.

9.
ACS Appl Mater Interfaces ; 16(32): 42615-42622, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101798

RESUMO

Porous materials synthesized through bottom-up approaches, such as metal-organic frameworks and covalent organic frameworks, have attracted attention owing to their design flexibility for functional materials. However, achieving the chemical and thermal stability of these materials for various applications is challenging considering the reversible coordination bonds and irreversible covalent bonds in their frameworks. Thus, ordered carbonaceous frameworks (OCFs) emerge as a promising class of bottom-up materials with good periodicity, thermal and chemical stability, and electrical conductivity. However, a few OCFs have been reported owing to the limited range of precursor molecules. Herein, we designed a hexaazatrinaphthylene-based molecule with enediyne groups as a precursor molecule for synthesizing an OCF. The solid-state Bergman cyclization of enediyne groups at a low temperature formed a microporous polymer and an OCF, exhibiting redox activity and demonstrating their potential for electrochemical applications. The microporous polymer was used as an active material in sodium-ion batteries, while the OCF was used as an electrochemical capacitor. These findings illustrate the utility of the Bergman cyclization reaction for synthesizing microporous polymers and OCFs with a customizable functionality for broad applications.

10.
Chem Asian J ; 18(8): e202201269, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36710263

RESUMO

The cycloaddition reaction of o-diisocyanoarenes with interelement compounds under light is a very important reaction system to clarify whether this reaction proceeds by radical cyclization or by aza-Bergman cyclization. In this study, a series of diphosphines with phosphorus-phosphorus single bonds were selected as interelement compounds, and their cycloaddition reactions with o-diisocyanoarenes under light were investigated in detail to achieve a novel photoinduced synthesis of bisphosphinated quinoxalines via the radical cyclization pathway. In addition, the photoinduced reaction of diphosphines with isocyanides having o-functional groups such as cyano and ethenyl groups allowed us to elucidate the reaction pathway and product selectivity of this bisphosphination. Furthermore, the one-pot synthesis of PdII -quinoxaline complex was successfully achieved by applying the developed reaction.

11.
Materials (Basel) ; 14(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803591

RESUMO

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer's performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.

12.
Top Curr Chem (Cham) ; 375(3): 60, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28534207

RESUMO

Synthetic polymer chemistry is a fundamental part of polymer science, and highly efficient polymerization reactions are essential for the synthesis of high-performance polymers. Development of new synthetic methods for emerging polymer science is of great importance in this regard. Bergman cyclization is a chemical process in which highly reactive aryl diradicals form from enediyne precursors, having a strong impact in a number of fields including pharmaceutics, synthetic chemistry, and materials science. Diradical intermediates stemming from enediynes can cause DNA cleavage under physiological conditions, leading to the strong cytotoxicity of many naturally occurring enediyne antibiotics. Meanwhile, diradical intermediates can quickly couple with each other to construct polyarylenes, providing a novel method to synthesize these conjugated polymers with the advantages of facile and catalyst-free operation, high efficiency, and tailored structure. Moreover, conjugated polymers generated by Bergman cyclization exhibit many remarkable properties, such as excellent thermal stability and good solubility and processability, enabling their further processing into carbon-rich materials. This review presents a brief overview of the trajectory of Bergman cyclization in polymer science, followed by an introduction to research advances, mainly from our group, in developing polymerization methods based on Bergman cyclization, taking advantages of its catalyst-free, byproduct-free, in situ polymerization mechanism to synthesize new polymeric materials with various structures and morphologies. These synthetic strategies include fabrication of rod-like polymers with polyester, dendrimer, and chiral imide side chains, functionalization of carbon nanomaterials by surface-grafting conjugated polymers, formation of nanoparticles by intramolecular collapse of single polymer chains, and construction of carbon nanomembranes on the external and internal surface of inorganic nanomaterials. These polymers with novel structural features have been used in a variety of fields, such as energy transformation, energy storage, catalyst support, and fluorescent detection. Finally, the outlook for future developments of Bergman cyclization in polymer science is presented.


Assuntos
Polímeros/síntese química , Ciclização , Estrutura Molecular , Polimerização , Polímeros/química
13.
Curr Med Chem ; 24(32): 3433-3484, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443507

RESUMO

BACKGROUND: The first reports of the natural enediyne anticancer antibiotics date back to the late 1980s; since then, a great deal of interest has been devoted to the chemistry, biology and potential medical applications of this family of compounds. The biological activity of enediynes is linked to the presence of a highly unsaturated hex-1-ene-1,5-diyne system. The thermally induced transformation of this unit into a benzene σ-σ diradical (the Bergman cycloaromatization) is the key step of the antitumor properties of such compounds: 1,4-diaryl radicals are able to abstract H-atoms from the deoxyribose backbone of DNA, thus leading to DNA strand cleavage and ultimately cell death. METHODS: We undertook a structured search of bibliographic databases for peer-reviewed research literature using focused and high quality papers. Research efforts addressed at understanding and mimicking the various processes involved in the targeting, activation and DNA cleavage associated with these products are described. The potential of a great number of non natural enediynes in the treatment of many infectious diseases, apart their role in anticancer drugs, such as antibacterial activity, protein degradation activity, has been reported Results: Due to the interesting mode of action of this class of compounds, the unique molecular architecture of enediynes has been exploited towards the synthesis of many non natural compounds in order to study and enhance their biological properties. Seventy-six papers were included in this review. It is divided in paragraphs that include: Carbo- oxygen-nitrogen- and sulfur- enediynes, polymers and macrocycles. The synthetic approaches to the different classes of compounds are discussed in detail together with the biological implications of the synthesized compounds Conclusion: The review summarizes the most recent advances in the synthesis and reactivity of non natural enediynes by focusing the attention particularly to the biological properties of the most interesting members of the family of carbo- and hetero- enediynes. The findings of this review confirm the importance of non natural enediynes as potential drugs in the treatment of cancer and many infectious diseases.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Técnicas de Química Sintética/métodos , Enedi-Inos/síntese química , Enedi-Inos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Clivagem do DNA/efeitos dos fármacos , Enedi-Inos/química , Enedi-Inos/farmacologia , Humanos , Neoplasias/genética
14.
J Phys Chem Lett ; 5(5): 905-9, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26274086

RESUMO

Photoswitches incorporated into molecular frameworks have been used since a long time to trigger chemical processes on demand. Here, it is shown how mechanophores can be used as switches in order to drastically change the reactivity of a neighboring functional group as a function of external stress. The reactivities of cyclic enediynes, which are highly toxic agents when undergoing Bergman cyclization, roughly correlate with the distance between the bond-forming carbons in many cases. It is demonstrated how this distance, and thus enediyne reactivity, can be tuned upon applying mechanical stress. Depending on suitable substitution patterns, chemically inert species can be turned into highly reactive ones and vice versa, thus extending the concept of photoswitching to mechanoswitching. Moreover, depending on the derivative, it is found that C1-C5 cyclization becomes energetically preferred over the Bergman (C1-C6) pathway at nano-Newton forces, thus leading to a force-induced switch in selectivity in such cases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa