Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Adv Exp Med Biol ; 1276: 105-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705597

RESUMO

Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Esteróis , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Humanos , Lipoproteínas , Fígado/metabolismo , Esteróis/metabolismo
2.
Ann Hepatol ; 16(Suppl. 1: s3-105.): s27-s42, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29080338

RESUMO

Atherosclerosis is characterized by lipid accumulation, inflammatory response, cell death and fibrosis in the arterial wall, and is major pathological basis for ischemic coronary heart disease (CHD), which is the leading cause of morbidity and mortality in the USA and Europe. Intervention studies with statins have shown to reduce LDL cholesterol levels and subsequently the risk of developing CHD. However, not all the aggressive statin therapy could decrease the risk of developing CHD. Many clinical and epidemiological studies have clearly demonstrated that the HDL cholesterol is inversely associated with risk of CHD and is a critical and independent component of predicting its risk. Elucidations of HDL metabolism give rise to therapeutic targets with potential to raising plasma HDL cholesterol levels, thereby reducing the risk of developing CHD. The concept of reverse cholesterol transport is based on the hypothesis that HDL displays an cardioprotective function, which is a process involved in the removal of excess cholesterol that is accumulated in the peripheral tissues (e.g., macrophages in the aortae) by HDL, transporting it to the liver for excretion into the feces via the bile. In this review, we summarize the latest advances in the role of the lymphatic route in reverse cholesterol transport, as well as the biliary and the non-biliary pathways for removal of cholesterol from the body. These studies will greatly increase the likelihood of discovering new lipid-lowering drugs, which are more effective in the prevention and therapeutic intervention of CHD that is the major cause of human death and disability worldwide.


Assuntos
Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/prevenção & controle , Transporte Biológico , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/epidemiologia , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Prognóstico , Fatores de Risco
3.
Adv Ther ; 40(3): 743-768, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602656

RESUMO

The prevalence of cholesterol gallstone disease is increasing, primarily due to the global epidemic of obesity associated with insulin resistance, and this trend leads to a considerable healthcare, financial, and social burden worldwide. Although phospholipids play an essential role in maintaining cholesterol solubility in bile through both mixed micelles and vesicles, little attention has been paid to the impact of biliary phospholipids on the pathogenesis of cholesterol gallstone formation. A reduction or deficiency of biliary phospholipids results in a distinctly abnormal metastable physical-chemical state of bile predisposing to supersaturation with cholesterol. Changes in biliary phospholipid concentrations influence cholesterol crystallization by yielding both liquid crystalline and "anhydrous" crystalline metastable intermediates, evolving into classical parallelogram-shaped cholesterol monohydrate crystals in supersaturated bile. As a result, five distinct crystallization pathways, A-E, have been defined, mainly based on the prime habits of liquid and solid crystals in the physiological or pathophysiological cholesterol saturation of gallbladder and hepatic bile. This review concisely summarizes the chemical structures and physical-chemical properties of biliary phospholipids and their physiological functions in bile formation and cholesterol solubility in bile, as well as comprehensively discusses the latest advances in the role of biliary phospholipids in cholesterol crystallization and growth in gallstone formation, largely based on the findings from clinical and animal studies and in vitro experiments. The insights gleaned from uncovering the cholelithogenic mechanisms are expected to form a fundamental framework for investigating the hitherto elusive events in the earliest stage of cholesterol nucleation and crystallization. This may help to identify better measures for early diagnosis and prevention in susceptible subjects and effective treatment of patients with gallstones.


Assuntos
Cálculos Biliares , Animais , Humanos , Cálculos Biliares/metabolismo , Cálculos Biliares/patologia , Fosfolipídeos/química , Cristalização , Ácidos e Sais Biliares , Colesterol
4.
Genes (Basel) ; 13(6)2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35741809

RESUMO

Clinical studies have revealed that the ABCB4 gene encodes the phospholipid transporter on the canalicular membrane of hepatocytes, and its mutations and variants are the genetic basis of low phospholipid-associated cholelithiasis (LPAC), a rare type of gallstone disease caused by a single-gene mutation or variation. The main features of LPAC include a reduction or deficiency of phospholipids in bile, symptomatic cholelithiasis at <40 years of age, intrahepatic sludge and microlithiasis, mild chronic cholestasis, a high cholesterol/phospholipid ratio in bile, and recurrence of biliary symptoms after cholecystectomy. Needle-like cholesterol crystals, putatively "anhydrous" cholesterol crystallization at low phospholipid concentrations in model and native bile, are characterized in ABCB4 knockout mice, a unique animal model for LPAC. Gallbladder bile with only trace amounts of phospholipids in these mice is supersaturated with cholesterol, with lipid composition plotting in the left two-phase zone of the ternary phase diagram, consistent with "anhydrous" cholesterol crystallization. In this review, we summarize the molecular biology and physiological functions of ABCB4 and comprehensively discuss the latest advances in the genetic analysis of ABCB4 mutations and variations and their roles in the pathogenesis and pathophysiology of LPAC in humans, based on the results from clinical studies and mouse experiments. To date, approximately 158 distinct LPAC-causing ABCB4 mutations and variants in humans have been reported in the literature, indicating that it is a monogenic risk factor for LPAC. The elucidation of the ABCB4 function in the liver, the identification of ABCB4 mutations and variants in LPAC patients, and the exploration of gene therapy for ABCB4 deficiency in animal models can help us to better understand the cellular, molecular, and genetic mechanisms underlying the onset of the disease, and will pave the way for early diagnosis and prevention of susceptible subjects and effective intervention for LPAC in patients.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Colelitíase , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Colelitíase/diagnóstico , Colelitíase/genética , Colesterol , Testes Genéticos , Humanos , Camundongos , Mutação , Fosfolipídeos , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa