Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893516

RESUMO

A series of bimetallic NixCuy catalysts with different metal molar ratios, supported on nitric acid modified rice husk-based porous carbon (RHPC), were prepared using a simple impregnation method for the liquid-phase hydrogenation of furfural (FFA) to tetrahydrofurfuryl alcohol (THFA). The Ni2Cu1/RHPC catalyst, with an average metal particle size of 9.3 nm, exhibits excellent catalytic performance for the selective hydrogenation of FFA to THFA. The 100% conversion of FFA and the 99% selectivity to THFA were obtained under mild reaction conditions (50 °C, 1 MPa, 1 h), using water as a green reaction solvent. The synergistic effect of NiCu alloy ensures the high catalytic activity. The acid sites and oxygen-containing functional groups on the surface of the modified RHPC can enhance the selectivity of THFA. The Ni2Cu1/RHPC catalyst offers good cyclability and regenerability. The current work proposes a simple method for preparing an NiCu bimetallic catalyst. The catalyst exhibits excellent performance in the catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol, which broadens the application of non-noble metal bimetallic nanocatalysts in the catalytic hydrogenation of furfural.

2.
Environ Res ; 227: 115706, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931381

RESUMO

The catalytic ozonation of methylethylketone (MEK) was performed at the room temperature (25 °C) using the synthesized Mn and Cu-loaded zeolite (ZSM-5, SiO2/Al2O3 = 80) catalysts. The ZSM-5 zeolite was used as a porous support material due to the large surface area and high capacity for adsorption of volatile organic compounds. Since Mn and Cu-loaded zeolite catalysts were effective for the catalytic ozonation of VOCs such as MEK, according to the loaded concentration of Mn and Cu, there are four types of metal loaded ZSM5 catalysts synthesized [5 wt% Mn/ZSM-5, 5 wt% Cu/ZSM-5, 5 wt% Mn-1 wt% Cu/ZSM-5 (5Mn1CuZSM), and 5 wt% Cu-1 wt% Mn/ZSM-5]. The catalytic efficiency for the removal of MEK and ozonation using the different catalysts was also studied. Based on various experimental analysis processes, the characteristics of the synthesized catalysts were explored and the removal efficiencies of MEK and O3 together with the COx concentration generated from the destruction of MEK and O3 were explored. The results for the decomposition of MEK and O3 at the room temperature indicated that the Mn dominant ZSM-5 catalysts showed better efficiency for the conversion of MEK and O3. The 5 wt% Mn/ZSM-5 outweighed the rest of them for the removal of MEK while the 5Mn1CuZSM showed the best catalytic reactivity for the conversion of O3 and the CO2 selectivity. It was ascertained that during the reaction time of catalyst and reactants of 120 min the Mn dominantly deposited bimetallic catalyst, 5Mn1CuZSM, was determined as the most effective for the removal of MEK and O3 due to the high capability of production of Mn3+ species and more available adsorbed oxygen sites compared to the other catalysts. Finally, the durability measurement for the 5Mn1CuZSM catalyst was performed together with the produced CO and CO2 concentration for 420 min.


Assuntos
Ozônio , Zeolitas , Dióxido de Silício , Dióxido de Carbono , Porosidade , Quinases de Proteína Quinase Ativadas por Mitógeno , Catálise
3.
Environ Res ; 216(Pt 1): 114542, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228689

RESUMO

The development of high-performance, strong-durability and low-cost cathode catalysts toward oxygen reduction reaction (ORR) is of great significance for microbial fuel cells (MFCs). In this study, a series of bimetallic catalysts were synthesized by pyrolyzing a mixture of g-C3N4 and Fe, Co-tannic complex with various Fe/Co atomic ratios. The initial Fe/Co atomic ratio (3.5:0.5, 3:1, 2:2, 1:3) could regulate the electronic state, which effectively promoted the intrinsic electrocatalytic ORR activity. The alloy metal particles and metal-Nx sites presented on the catalyst surface. In addition, N-doped carbon interconnected network consisting of graphene-like and bamboo-like carbon nanotube structure derived from g-C3N4 provided more accessible active sites. The resultant Fe3Co1 catalyst calcined at 700 °C (Fe3Co1-700) exhibited high catalytic performance in neutral electrolyte with a half-wave potential of 0.661 V, exceeding that of the commercial Pt/C (0.6 V). As expected, the single chamber microbial fuel cell (SCMFC) with 1 mg/cm2 loading of Fe3Co1-700 catalyst as the cathode catalyst afforded a maximum power density of 1425 mW/m2, which was 10.5% higher than commercial Pt/C catalyst with the same loading (1290 mW/m2) and comparable to the Pt/C catalyst with 2.5 times higher loading ( 1430 mW/m2). Additionally, the Fe3Co1-700 also displayed better long-term stability over 1100 h than the Pt/C. This work provides an effective strategy for regulating the surface electronic state in the bimetallic electro-catalyst.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias/química , Eletrodos , Catálise , Eletrônica
4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614210

RESUMO

The present work describes an efficient reaction of electrochemical phosphorylation of phenylacetylene controlled by the composition of catalytic nanoparticles based on non-noble-metals. The sought-after products are produced via the simple synthetic protocol based on room temperature, atom-economical reactions, and silica nanoparticles (SNs) loaded by one or two d-metal ions as nanocatalysts. The redox and catalytic properties of SNs can be tuned with a range of parameters, such as compositions of the bimetallic systems, their preparation method, and morphology. Monometallic SNs give phosphorylated acetylene with retention of the triple bond, and bimetallic SNs give a bis-phosphorylation product. This is the first example of acetylene and phosphine oxide C-H/P-H coupling with a regenerable and recyclable catalyst.


Assuntos
Nanopartículas , Óxidos , Metais/química , Alcinos
5.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511098

RESUMO

The reductive catalytic fractionation of flax shives in the presence of bimetallic NiRu catalysts supported on oxidized carbon materials (CM) such as mesoporous Sibunit and carbon mesostructured by KAIST (CMK-3) was studied. The catalysts based on CMK-3 were characterized by a higher surface area (1216 m2/g) compared to the ones based on Sibunit (315 m2/g). The catalyst supported on CMK-3 (10Ni3RuC400) was characterized by a more uniform distribution of Ni particles, in contrast to the Sibunit-based catalyst (10Ni3RuS450), on the surface of which large agglomerated particles (300-400 nm) were presented. The bimetallic catalysts were found to be more selective towards propanol-substituted methoxyphenols compared to monometallic Ru/C and Ni/C catalysts. A high yield of monomers (up to 26 wt%, including 17% 4-propanol guaiacol) was obtained in the presence of a 10Ni3RuC400 catalyst based on CMK-3.


Assuntos
Etanol , Linho , Catálise , 1-Propanol , Propanóis , Carbono
6.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902156

RESUMO

The paper introduces spatially stable Ni-supported bimetallic catalysts for CO2 methanation. The catalysts are a combination of sintered nickel mesh or wool fibers and nanometal particles, such as Au, Pd, Re, or Ru. The preparation involves the nickel wool or mesh forming and sintering into a stable shape and then impregnating them with metal nanoparticles generated by a silica matrix digestion method. This procedure can be scaled up for commercial use. The catalyst candidates were analyzed using SEM, XRD, and EDXRF and tested in a fixed-bed flow reactor. The best results were obtained with the Ru/Ni-wool combination, which yields nearly 100% conversion at 248 °C, with the onset of reaction at 186 °C. When we tested this catalyst under inductive heating, the highest conversion was observed already at 194 °C.


Assuntos
Dióxido de Carbono , Níquel , Calefação , Dióxido de Silício
7.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138634

RESUMO

The water-gas shift (WGS) performance was investigated over 5%Ni/CeO2, 5%Ni/Ce0.95Pr0.05O1.975, and 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalysts to decrease the CO amount and generate extra H2. CeO2 and Pr-doped CeO2 mixed oxides were synthesized using a combustion method. After that, Ni and Re were loaded onto the ceria support via an impregnation method. The structural and redox characteristics of monometallic Ni and bimetallic NiRe materials, which affect their water-gas shift performance, were investigated. The results show that the Pr addition into Ni/ceria increases the specific surface area, decreases the ceria crystallite size, and improves the dispersion of Ni on the CeO2 surface. Furthermore, Re addition results in the enhancement of the WGS performance of the Ni/Ce0.95Pr0.05O1.975 catalyst. Among the studied catalysts, the ReNi/Ce0.95Pr0.05O1.975 catalyst showed the highest catalytic activity, reaching 96% of CO conversion at 330°. It was established that the occurrence of more oxygen vacancies accelerates the redox process at the ceria surface. In addition, an increase in the Ni dispersion, Ni surface area, and surface acidity has a positive effect on hydrogen generation during the water-gas shift reaction due to favored CO adsorption.

8.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838755

RESUMO

The Ullmann reaction has been reported to be the first cross-coupling reaction performed by using a transition metal catalyst. This reaction has been initially considered as the copper-catalyzed homocoupling of aryl halides, leading to the formation of symmetrical biaryl compounds via the generation of novel C-C bonds. Although this reaction has been extensively studied in recent decades and valuable results have been achieved, there are still considerable efforts focused on the development of novel catalytic systems, mild reaction conditions, and extended substrate scope. The mechanistic aspects of the Ullmann homocoupling reaction have also been investigated, as related to the introduction of new sustainable strategies and green procedures. The application of recyclable heterogeneous catalysts has been found to overcome most of the limitations associated with the harsh reaction conditions of the original Ullmann reaction. More recently, copper-based catalytic systems have also been replaced by palladium nanoparticles, ionic palladium species, gold nanoparticles, and palladium-gold bimetallic systems. In this review, current results reported on the Ullmann homocoupling reaction are discussed, with an emphasis on the development of novel catalytic systems, which can be efficiently used under heterogeneous conditions.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Paládio/química , Cobre , Ouro , Catálise
9.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110570

RESUMO

Allylic alcohols typically produced through selective hydrogenation of α,ß-unsaturated aldehydes are important intermediates in fine chemical industry, but it is still a challenge to achieve its high selectivity transformation. Herein, we report a series of TiO2-supported CoRe bimetallic catalysts for the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) using formic acid (FA) as a hydrogen donor. The resultant catalyst with the optimized Co/Re ratio of 1:1 can achieve an exceptional COL selectivity of 89% with a CAL conversion of 99% under mild conditions of 140 °C for 4 h, and the catalyst can be reused four times without loss of activity. Meanwhile, the Co1Re1/TiO2/FA system was efficient for the selective hydrogenation of various α,ß-unsaturated aldehydes to the corresponding α,ß-unsaturated alcohols. The presence of ReOx on the Co1Re1/TiO2 catalyst surface was advantageous to the adsorption of C=O, and the ultrafine Co nanoparticles provided abundant hydrogenation active sites for the selective hydrogenation. Moreover, FA as a hydrogen donor improved the selectivity to α,ß-unsaturated alcohols.

10.
Angew Chem Int Ed Engl ; 62(8): e202214665, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36504434

RESUMO

At the core of carbon monoxide dehydrogenase (CODH) active site two metal ions together with hydrogen bonding scheme from amino acids orchestrate the interconversion between CO2 and CO. We have designed a molecular catalyst implementing a bimetallic iron complex with an embarked second coordination sphere with multi-point hydrogen-bonding interactions. We found that, when immobilized on carbon paper electrode, the dinuclear catalyst enhances up to four fold the heterogeneous CO2 reduction to CO in water with an improved selectivity and stability compared to the mononuclear analogue. Interestingly, quasi-identical catalytic performances are obtained when one of the two iron centers was replaced by a redox inactive Zn metal, questioning the cooperative action of the two metals. Snapshots of X-ray structures indicate that the two metalloporphyrin units tethered by a urea group is a good compromise between rigidity and flexibility to accommodate CO2 capture, activation, and reduction.

11.
Chem Rec ; 22(7): e202200030, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475530

RESUMO

The emerging concept of the hydrogen economy is facing challenges associated with hydrogen storage and transport. The utilization of ammonia as an energy (hydrogen) carrier for the on-site generation of hydrogen via ammonia decomposition has gained attraction among the scientific community. Ruthenium-based catalysts are highly active but their high cost and less abundance are limitations for scale-up application. Therefore, combining ruthenium with cheaper transition metals such as nickel, cobalt, iron, molybdenum, etc., to generate metal-metal (bimetallic) surfaces suitable for ammonia decomposition has been investigated in recent years. Herein, the recent trends in developing bimetallic catalyst systems, the role of metal type, support materials, promoter, synthesis techniques, and the investigations of the reaction kinetics and mechanism for ammonia decomposition have been reviewed.

12.
Nanotechnology ; 33(27)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35294941

RESUMO

Formic acid (FA) has been recently regarded as a safe and stable source of hydrogen (H2). Selective and efficient dehydrogenation of FA by an effective catalyst under mild conditions is still a challenge. So, different molar ratios of bimetallic Pd-Au alloy nanoparticles were effectively stabilized and uniformly distributed on boron nitride nanosheets (BNSSs) surface via the precipitation process. Obtained catalysts were employed in FA decomposition for H2production. Pd-Au@BNNS containing 3% Au and 5% Pd (Au.03Pd.05@BNNS) exhibited high activity and 100% H2selectivity for H2production from FA at 50 °C. In order to optimize the reaction conditions, various factors including, time, temperature, solvent, base type, and amount of catalyst, were examined.

13.
Environ Res ; 206: 112622, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958781

RESUMO

The critical environmental issues of antibiotic resistance and renewable energies supply urge researching materials synthesis and catalyst activity on hydrogen production processes. Aiming to analyse the antibacterial effect of platinum-silver (Ag-Pt) nanoparticles (NPs) and the catalyst effect on NaBH4 hydrolysis that can be used for hydrogen generation technology, in this work, Ag-Pt NPs were prepared using aqueous propolis extract. Various methods were used for the characterization (Uv-vis Spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and X-ray diffraction Spectroscopy (XRD)). The antimicrobial activity of Ag-Pt bimetallic nanoparticles was evaluated in vitro by the microdilution method against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus epidermidis, and Serratia marcescens. The results confirmed the antimicrobial activity of bimetallic NPs Ag-Pt concentrations of (25, 50, and 100 µg/ml). A concentration of 100 µg/ml showed low bacterial viability varying between 22.58% and 29.67% for the six tested bacteria. For the catalyst activity on NaBH4 hydrolysis, the results showed high turnover factor (TOF) and low activation energy of 1208.57 h-1 and 25.61 kJ/mol, respectively, with high hydrogen yield under low temperature. Synthesized Ag-Pt NPs can have great potential for biological and hydrogen storage applications.


Assuntos
Nanopartículas Metálicas , Própole , Antibacterianos/química , Antibacterianos/farmacologia , Hidrólise , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais , Própole/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236585

RESUMO

Acetylene detection plays an important role in fault diagnosis of power transformers. However, the available dissolved gas analysis (DGA) techniques have always relied on bulky instruments and are time-consuming. Herein, a high-performance acetylene sensor was fabricated on a microhotplate chip using In2O3 as the sensing material. To achieve high sensing response to acetylene, Pd-Ag core-shell nanoparticles were synthesized and used as catalysts. The transmission electron microscopy (TEM) image clearly shows that the Ag shell is deposited on one face of the cubic Pd nanoseeds. By loading the Pd-Ag bimetallic catalyst onto the surface of In2O3 sensing material, the acetylene sensor has been fabricated for acetylene detection. Due to the high catalytic performance of Pd-Ag bimetallic nanoparticles, the microhotplate sensor has a high response to acetylene gas, with a limit of detection (LOD) of 10 ppb. In addition to high sensitivity, the fabricated microhotplate sensor exhibits satisfactory selectivity, good repeatability, and fast response to acetylene. The high performance of the microhotplate sensor for acetylene gas indicates the application potential of trace acetylene detection in power transformer fault diagnosis.

15.
J Environ Manage ; 306: 114500, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051814

RESUMO

In this study, Cu-Fe bimetallic magnetic chitosan carbon aerogel catalyst (Cu-Fe@CS) was prepared by the sol-gel method to degrade Fulvic acid (FA) in Fenton-like system. Degradation experiment results showed bimetallic catalyst Cu-Fe@CS can degrade more FA than monometallic catalysts (Cu@CS and Fe@CS) due to the synergistic effect between the copper and iron. Plackett Buiman (PB) design showed that pH and temperature exhibited significant influence on FA degradation. The significant factors were optimized by Central Composite Design (CCD), the results revealed that the maximum FA removal reached 96.59% under the conditions of pH 4.07 and temperature 93.77 °C, the corresponding TOC removal reached 77.7%. The kinetic analysis implied that the reaction followed pseudo-first order kinetic with correlation coefficient (R2) = 0.9939. The Arrhenius fitting analysis revealed that Cu-Fe@CS had a lower activation energy (Ea) than Cu@CS and Fe@CS, meaning that reaction was easier to occur in Fenten-like system with Cu-Fe@CS. Catalyst still remained the higher FA and TOC removals of 96.28% and 77.33% after six runs, respectively. The FA removal was reduced by 65.53% with 12 mmol tertiary butanol (TBA) as scavenger, indicating that •OH played an important role in FA degradation. Finally, the catalytic degradation mechanism was proposed.


Assuntos
Carbono , Peróxido de Hidrogênio , Benzopiranos , Catálise , Cinética , Fenômenos Magnéticos , Oxirredução
16.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163882

RESUMO

Nieuwland catalyst is a key step in the dimerization of acetylene. Various zirconium metal additives incorporating Nieuwland catalysts were prepared, and their catalytic performances were assessed in acetylene dimerization. Different characterization techniques (i.e., thermogravimetric analysis, temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, hydrogen ion concentration measurement and transmission electron microscopy) were employed in this study. The best catalytic performance was obtained over zirconium-acetylacetonate-incorporated Nieuwland catalysts, with an acetylene conversion of 53.3% and a monovinylacetylene selectivity of 87.4%. Based on these results, the zirconium acetylacetonate additive could reduce the types of transition state complexes, and it could also change the morphology of the catalyst. In addition, the additives could significantly inhibit the occurrence of trimerization products and polymers. Hence, the conversion of acetylene, monovinylacetylene selectivity, and stability of the Nieuwland catalysts were enhanced.

17.
Angew Chem Int Ed Engl ; 61(13): e202117809, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35043530

RESUMO

Herein, we report a series of CuPd catalysts for electrochemical hydrogenation (ECH) of furfural to 2-methylfuran (MF or FurCH3 where Fur=furyl) in aqueous 0.1 M acetic acid (pH 2.9). The highest faradaic efficiency (FE) for MF reached 75 % at -0.58 V vs. reversible hydrogen electrode with an average partial current density of 4.5 mA cm-2 . In situ surface-enhanced Raman spectroscopic and kinetic isotopic experiments suggested that electrogenerated adsorbed hydrogen (Hads ) was involved in the reaction and incorporation of Pd enhanced the surface coverage of Hads and optimized the adsorption pattern of furfural, leading to a higher FE for MF. Density functional theory calculations revealed that Pd incorporation reduced the energy barrier for the hydrogenation of FurCH2 * to FurCH3 *. Our study demonstrates that catalyst surface structure/composition plays a crucial role in determining the selectivity in ECH and provides a new strategy for designing advanced catalysts for ECH of bio-derived oxygenates.

18.
Angew Chem Int Ed Engl ; 61(22): e202202585, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35229423

RESUMO

Asymmetric copolymerization of meso-epoxide and anhydride is a powerful strategy for preparing various isotactic polyesters with two contiguous stereogenic centers. However, the previous binary systems suffered from slow rates at low loadings, poor enantioselectivities and transesterification reactions at enhanced temperatures. Herein, we report novel dinuclear aluminium complexes with multiple chiralities and ammonium salts anchored on ligand frameworks. These bifunctional catalysts exhibit high activities and enantioselectivities for epoxides/anhydrides copolymerizations at harsh conditions via intramolecularly synergistic catalysis, affording polyesters with unprecedented molecular weights and narrow distributions. Notably, no transesterification reactions were observed, significantly different from the binary catalyst/cocatalyst pairs. This study represents a rare example regarding temperature-independent asymmetric induction for preparing chiral polymers from achiral monomers.

19.
Environ Sci Technol ; 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309365

RESUMO

Heterogeneous catalysis holds great promise for oxidizing or reducing a range of pollutants in water. A well-recognized, but understudied, barrier to implement catalytic treatment centers around fouling or aging over time of the catalyst surfaces. To better understand how to study catalyst fouling or aging, we selected a representative bimetallic catalyst (Pd-In supported on Al2O3), which holds promise to reduce nitrate to innocuous nitrogen gas byproducts upon hydrogen addition, and six model solutions (deionized water, sodium hypochlorite, sodium borohydride, acetic acid, sodium sulfide, and tap water). Our novel aging experimental apparatus permitted single passage of each model solution, separately, through a small packed-bed reactor containing replicate bimetallic catalyst "beds" that could be sacrificed weekly for off-line characterization to quantify impacts of fouling or aging. The composition of the model solutions led to the following gradual changes in surface composition, morphology, or catalytic reactivity: (i) formation of passivating species, (ii) decreased catalytic sites due to metal leaching under acid conditions or sulfide poisoning, (iii) dissolution and/or transformation of indium, (iv) formation of new catalytic sites by the introduction of an additional metallic element, and (v) oxidative etching. The model solution water chemistry captured a wide range of conditions likely to be encountered in potable or industrial water treatment. Aging-induced changes altered catalytic activity and provided insights into potential strategies to improve long-term catalyst operations for water treatment.

20.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200346, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510929

RESUMO

The hydrodeoxygenation (HDO) of acetophenone was evaluated in liquid phase and gas phase over monometallic Pt/SiO2, Co/SiO2 and bimetallic Pt-Co/SiO2 catalysts. The influence of reaction time and loading of the catalyst were analysed by following the conversion and products selectivity. Phenylethanol, cyclohexylethanone and cyclohexylethanol are the main products of reaction using the Pt/SiO2 catalyst. By contrast, ethylbenzene and phenylethanol are the only products formed on the Co/SiO2 and Pt-Co/SiO2 catalysts. The bimetallic catalyst is more stable as a function of time and more active towards the HDO process than the monometallic systems. The presence of an organic solvent showed only minor changes in product yields with no effect on the product speciation. Periodic density functional theory analysis indicates a stronger interaction between the carbonyl group of acetophenone with Co than with Pt sites of the mono and bimetallic systems, indicating a key activity of oxophilic sites towards improved selectivity to deoxygenated products. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa