Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 258: 119420, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885825

RESUMO

Novel catalysts with multiple active sites and rapid separation are required to effectively activate peroxymonosulfate (PMS) for the removal of organic pollutants from water. Therefore, an integrated catalyst for PMS activation was developed by directly forming Co-Fe Prussian blue analogs on a three-dimensional porous nickel foam (NF), which were subsequently phosphorylated to obtain cobalt-iron bimetallic phosphide (FeCoP@NF). The FeCoP@NF/PMS system efficiently degraded dye wastewater within 20 min. The system exhibited excellent catalytic degradation over a broad pH range and at high dye concentrations due to the presence of unique asymmetrically charged Coa+ and Pb- dual active sites formed by cobalt phosphides within FeCoP@NF. These active sites significantly enhanced the catalytic activity of PMS. The activation mechanism of PMS involves phosphorylation that accelerates electron transfer from FeCoP@NF to PMS, to generate SO4·-, ·OH, O2·-, and 1O2 active species. Three-dimensional FeCoP@NF could be readily recycled and showed good stability for PMS activation. In this study, a highly efficient, stable, and readily recyclable integrated catalyst was developed. This catalyst system effectively resolves the separation and recovery issues associated with conventional powder catalysts and has a wide range of potential applications in wastewater treatment.


Assuntos
Cobalto , Corantes , Ferro , Níquel , Peróxidos , Poluentes Químicos da Água , Cobalto/química , Níquel/química , Ferro/química , Corantes/química , Peróxidos/química , Poluentes Químicos da Água/química , Catálise , Fosfinas/química
2.
Small ; 19(20): e2206533, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36793256

RESUMO

Seawater electrolysis is promising for green hydrogen production but hindered by the sluggish reaction kinetics of both cathode and anode, as well as the detrimental chlorine chemistry environment. Herein, a self-supported bimetallic phosphide heterostructure electrode strongly coupled with an ultrathin carbon layer on Fe foam (C@CoP-FeP/FF) is constructed. When used as an electrode for the hydrogen and oxygen evolution reactions (HER/OER) in simulated seawater, the C@CoP-FeP/FF electrode shows overpotentials of 192 mV and 297 mV at 100 mA cm-2 , respectively. Moreover, the C@CoP-FeP/FF electrode enables the overall simulated seawater splitting at the cell voltage of 1.73 V to achieve 100 mA cm-2 , and operate stably during 100 h. The superior overall water and seawater splitting properties can be ascribed to the integrated architecture of CoP-FeP heterostructure, strongly coupled carbon protective layer, and self-supported porous current collector. The unique composites can not only provide enriched active sites, ensure prominent intrinsic activity, but also accelerate the electron transfer and mass diffusion. This work confirms the feasibility of an integration strategy for the manufacturing of a promising bifunctional electrode for water and seawater splitting.

3.
Small ; 19(50): e2304399, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626463

RESUMO

Water splitting via an uninterrupted electrochemical process through hybrid energy storage devices generating continuous hydrogen is cost-effective and green approach to address the looming energy and environmental crisis toward constant supply of hydrogen fuel in fuel cell driven automobile sector. The high surface area metal-organic framework (MOF) driven bimetallic phosphides (ZnP2 @CoP) on top of CNT-carbon cloth matrix is utilized as positive and negative electrodes in energy storage devices and overall water splitting. The as-prepared positive electrode exhibits excellent specific capacitances/capacity of 1600 F g-1 /800 C g-1 @ 1A g-1 and the corresponding hybrid device reveals an energy density of 83.03 Wh kg-1 at power density of 749.9 W kg-1 . Simultaneously, the electrocatalytic performance of heterostructure shows overpotentials of 90 mV@HER and 204 mV@OER at current density of 10 and 20 mA cm-2 , respectively in alkaline electrocatalyzer. Undoubtedly, it shows overall water splitting with low cell voltage of 1.53 V@10 mA cm-2 having faradic and solar-to-hydrogen conversion efficiency of 98.81% and 9.94%, respectively. In addition, the real phase demonstration of the overall water-splitting is performed where the electrocatalyzer is connected with a series of hybrid supercapacitor devices powered up by the 6 V standard silicon solar panel to produce uninterrupted green H2 .

4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955543

RESUMO

The search for a simple and effective method to remove organic dyes and color intermediates that threaten human safety from the water environment is urgent. Herein, we report a simple method for constructing iron/nickel phosphide nanocrystals anchored on N-B-doped carbon-based composites, using steam-exploded poplar (SEP) and graphene oxide (GO) as a carrier. The stability and catalytic activity of N-B-NixFeyP/SEP and GO were achieved by thermal conversion in a N2 atmosphere and modifying the Fe/Ni ratio in gel precursors. N-B-Ni7Fe3P/SEP was employed for the catalytic hydrogenation of 4-nitrophenol (4-NP) and methylene blue (MB), using sodium borohydride in aqueous media at room temperature. This showed much better catalytic performances in terms of reaction rate constant (0.016 S-1 and 0.041 S-1, respectively) and the activity factor, K (1.6 S-1·g-1 and 8.2 S-1·g-1, respectively) compared to the GO carrier (0.0053 S-1 and 0.035 S-1 for 4-NP and MB, respectively). The strong interaction between the carrier's morphology and structure, and the vertically grown bimetallic phosphide nanoclusters on its surface, enhances charge transfer, electron transfer kinetics at the interface and Ni-Fe phosphide dispersion on the nanoclusters, and prevents dissolution of the nanoparticles during catalysis, thereby improving stability and achieving catalysis durability. These findings provide a green and simple route to efficient catalyst preparation and provide guidance for the rational selection of catalyst carriers.


Assuntos
Azul de Metileno , Nanopartículas , Catálise , Humanos , Ferro/química , Azul de Metileno/química , Níquel , Nitrofenóis
5.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786809

RESUMO

The application of electrochemical hydrogen evolution reaction (HER) for renewable energy conversion contributes to the ultimate goal of a zero-carbon emission society. Metal phosphides have been considered as promising HER catalysts in the alkaline environment, which, unfortunately, is still limited owing to the weak adsorption of H* and easy dissolution during operation. Herein, a bimetallic NiCoP-2/NF phosphide is constructed on nickel foam (NF), requiring rather low overpotentials of 150 mV and 169 mV to meet the current densities of 500 and 1000 mA cm-2, respectively, and able to operate stably for 100 h without detectable activity decay. The excellent HER performance is obtained thanks to the synergetic catalytic effect between Ni and Co, among which Ni is introduced to enhance the intrinsic activity and Co increases the electrochemically active area. Meanwhile, the protection of the externally generated amorphous phosphorus oxide layer improves the stability of NiCoP/NF. An electrolyser using NiCoP-2/NF as both cathode and anode catalysts in an alkaline solution can produce hydrogen with low electric consumption (overpotential of 270 mV at 500 mA cm-2).

6.
ChemSusChem ; : e202400900, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994916

RESUMO

Finding suitable bifunctional catalysts for industrial hydrogen production is the key to fully building a hydrogen energy society. In this study, we present a novel approach to modifying the surface morphology of electrodeposited cobalt phosphide (CoP). Specifically, we have developed a method to create a hydrangea-like structure of bimetallic cobalt-iron phosphide (B-CoFeP@CoP) through ion-exchange and NaBH4-assisted strategies. This catalyst exhibited excellent bifunctional catalytic capability at high current densities, achieving a current density of 500 mA cm-2 at a small overpotential (387 mV for OER and 252 mV for HER). When assembled into an OWS electrolyzer, this catalyst showed a fairly low cell voltage (≈1.88 V) at 500 mA cm-2 current density., Furthermore, B-CoFeP@CoP shows ceaseless durability over 120 h in both freshwater and seawater with almost no change in the cell voltage. A combined experimental and theoretical study identified that the unique hydrangea-like structure provided a larger electrochemically active surface area and more effective active sites. Further analysis indicates that during the OER process, phosphides ensure that bimetallic active sites adsorb more OOH * intermediates and further DFT calculations showed that B-Fe2P and B-Co2P acted as active centers for dissociation of H2O and desorption of H2, respectively, to synergistically catalyze the HER process.

7.
Small Methods ; 8(10): e2301645, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38607956

RESUMO

Bimetallic phosphides are considered as promising electrocatalysts for zinc-air batteries toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). To address the semi-conductor inherent low electronic conductivity and catalytic activity, a polymetal-chelated strategy is employed to in situ fabricate bimetallic nanophosphides within carbon matrix anchoring by chemical bonding. The employment of biomolecule polydopamine (PDA) efficiently anchors various transition metal ions due to its strong chelating capability via inherent functional groups. Furthermore, the chelation of multi-metal ion is proved to promote the formation of graphitic nitrogen. The bimetallic FexCoyP phosphides nanoparticles are intimately encapsulated in carbon matrix through in situ carbonization and phosphatization processes. When utilized in Zinc-air batteries, Fe0.20Co0.80P anchored within N, P co-doped sub-microsphere (Fe0.20Co0.80P /PNC) exhibit a maximum power density of 167 mW cm-2 and cycle life up to 270 cycles, with a round-trip voltage of 0.955 V. The mechanisms for catalytic activity passivation are ascribed to the etching of nitrogen and oxidation of phosphorus in carbon matrix, as well as the oxidation of the surface phosphide on the sub-microspheres. This study presents a promising candidate for advancing the further development of energy conversation catalysis.

8.
J Colloid Interface Sci ; 641: 942-949, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36989820

RESUMO

Lithium-sulfur batteries (LSBs) have aroused great research interest due to their high theoretical capacity and high energy density. To further develop lithium-sulfur batteries, it has become more and more important to put more efforts in promoting the adsorption and rapid catalytic conversion of lithium polysulfides (LiPSs). Herein, Ni/Co bimetallic phosphides were encapsulated into nitrogen-doped dual carbon conductive network (NiCoP@NC) by annealing and phosphorizing Ni-ZIF-67 precursor at high temperature. Due to their numerous co-adsorption/catalytic sites and high conductivity of carbon skeleton, the encapsulated Ni/Co phosphides particles could significantly enhance the anchoring and catalytic conversion of LiPSs and provide ultrafast channels for Li+ transport. When used as a modified separator for LSBs, the cells displayed superior performance with an initial capacity of 1083.4 m Ah g-1 at 0.5 C and outstanding cycle stability with a capacity decay rate of only 0.09% per cycle for 300 cycles. Besides, even at high sulfur loading (3.2 mg cm-2), they still present satisfactory performance. Therefore, this study presents a novel strategy on how to use MOF derived bimetallic phosphides with chemical adsorption and catalytic conversion of polysulfides for high-power advanced lithium-sulfur batteries.

9.
ACS Appl Mater Interfaces ; 14(28): 31803-31813, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792003

RESUMO

Metal phosphides are promising candidates for sodium-ion battery (SIB) anode owing to their large capacities with suitable redox potential, while the reversibility and rate performances are limited due to some electrochemically inactive transition-metal components and sluggish reaction kinetics. Here, we report a fully active bimetallic phosphide Zn0.5Ge0.5P anode and its composite (Zn0.5Ge0.5P-C) with excellent performance attributed to the Zn, Ge, and P components exerting their respective Na-storage merit in a cation-disordered structure. During Na insertion, Zn0.5Ge0.5P undergoes an alloying-type reaction, along with the generation of NaP, Na3P, NaGe, and NaZn13 phases, and the uniform distribution of these phases ensures the electrochemical reversibility during desodiation. Based on this reaction mechanism, excellent electrochemical properties such as a high reversible capacity of 595 mAh g-1 and an ultrafast charge-discharge capability of 377.8 mAh g-1 at 50C for 500 stable cycles were achieved within the Zn0.5Ge0.5P-C composite in a diglyme-based electrolyte. This work reveals the Na-storage reaction mechanism within Zn0.5Ge0.5P and offers a new perspective on designing high-performance anodes.

10.
J Colloid Interface Sci ; 602: 222-231, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119759

RESUMO

Design of highly active and stable non-precious electrocatalysts towards hydrogen evolution reaction (HER) is a hot research topic in low cost, clean and sustainable hydrogen energy field, yet remaining the important challenge caused by the sluggish reaction kinetics for water-alkali electrolyzers. Herein, a robust electrocatalyst is proposed by designing a novel sub-nanometer of copper and ruthenium bimetallic phosphide nanoclusters (RuxCuyP2) supported on a graphited carbon nanofibers (CNF). Uniform RuxCuyP2 (~1.90 nm) on the surface of CNF are obtained by introducing the dispersed Ru, thereby improving the intrinsic activity for HER. On optimizing the Ru ratio, the (x = y = 1) RuCuP2/CNF catalyst exhibits an excellent HER electroactivity with an overpotential of 10 mV in 1.0 M NaOH electrolyte to produce 10 mA cm-2 current density, which is lower than commercial 20% Pt/C in alkaline solution. Moreover, the kinetic study demonstrated that electrochemical activation energies for HER of RuCuP2/CNF is 20.7 kJ mol-1 highest among different ratio bimetallic phosphide. This simple, cost-effective, and environmentally friendly methodology can pave the way for exploitation of bimetallic phosphide nanoclusters for catalyst design.

11.
J Colloid Interface Sci ; 595: 51-58, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813224

RESUMO

Lithium-sulfur (Li-S) batteries have drawn a lot of attention owing to the high theoretical capacity of 1675 mAh g-1, environmental friendliness and relative abundance of sulfur. Nevertheless, the severe dissolution and migration of lithium polysulfides (LiPSs) and poor conductivity of sulfur greatly hinder the practical application of Li-S batteries. In this work, Fe-Ni-P@nitrogen-doped carbon (named as Fe-Ni-P@NC) derived from Fe-Ni Prussian blue analog (Fe-Ni PBA) was used as highly efficient sulfur host for Li-S batteries. The Fe-Ni-P particles not only enhance the adsorption of LiPSs but also effectively promote the conversion of LiPSs. In addition, the CN- of PBAs can readily generate nitrogen-doped carbon during pyrolysis, which can improve the conductivity of composites. Due to these advantages, Li-S batteries using S@Fe-Ni-P@NC composites cathodes exhibited good electrochemical performance with outstanding rate capability and stable cycling over 500 cycles with a lower capacity fading rate of 0.08% per cycle at 1 C.

12.
ACS Appl Mater Interfaces ; 13(7): 8832-8843, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587587

RESUMO

The design and synthesis of low-cost and efficient bifunctional electrocatalysts for water splitting are critical and challenging. Hereby, a bimetallic phosphide embedded in a N and P co-doped porous carbon (FeCoP2@NPPC) material was synthesized by using sustainable biomass-derived N- and P-containing carbohydrates and non-noble metal salts as precursors. The obtained material exhibits good catalytic activities in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. The bimetallic alloy phosphide (FeCoP2) is the active site for electrocatalysis. Theoretical calculation indicates that the sub-layer Fe atoms and top-layer Co atoms in FeCoP2 exhibit a synergistic effect for enhanced electrocatalytic performance. The carbon matrix around the FeCoP2 can prevent the corrosion during the catalytic reactions. The hierarchically porous structure of the FeCoP2@NPPC material can promote the transfer of electrons and electrolyte, and increase the contact area of the active sites and electrolytes. N- and P-containing functionalities improve the wetting and conductivity properties of the porous carbon. Due to the synergistic effects, FeCoP2@NPPC requires a low overpotential of 114 and 150 mV at the current density of 10 mA cm-2 for HER in 0.5 M H2SO4 and 1.0 M KOH, and an overpotential of 236 mV for OER in 1.0 M KOH solution, which are much lower than those of FeP@NPPC and CoP@NPPC. Based on the density functional theory calculation, FeCoP2 yields the smallest Gibbs free energy change of rate-determining step among the samples, which leads to better electrochemical performances. In addition, when FeCoP2@NPPC was used as a bifunctional catalyst in water splitting, the electrolyzer needed a low voltage of 1.60 V to deliver the current density of 10 mA cm-2. Furthermore, this work provides a strategy for preparing sustainable, stable, and highly active electrocatalysts for water splitting.

13.
ACS Nano ; 15(3): 5586-5599, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33625208

RESUMO

Water splitting via an electrochemical process to generate hydrogen is an economic and green approach to resolve the looming energy and environmental crisis. The rational design of multicomponent materials with seamless interfaces having robust stability, facile scalability, and low-cost electrocatalysts is a grand challenge to produce hydrogen by water electrolysis. Herein, we report a superhydrophilic homogeneous bimetallic phosphide of Ni2P-CuP2 on Ni-foam-graphene-carbon nanotubes (CNTs) heterostructure using facile electrochemical metallization followed by phosphorization without any intervention of metal-oxides/hydroxides. This bimetallic phosphide shows ultralow overpotentials of 12 (HER, hydrogen evolution reaction) and 140 mV (OER, oxygen evolution reaction) at current densities of 10 and 20 mA/cm2 in acidic and alkaline mediums, respectively. The excellent stability lasts for at least for 10 days at a high current density of 500 mA/cm2 without much deviation, inferring the practical utilization of the catalyst toward green fuel production. Undoubtedly, the catalyst is capable enough for overall water splitting at a very low cell voltage of 1.45 V @10 mA/cm2 with an impressive stability of at least 40 h, showing a minimum loss of potential. Theoretical study has been performed to understand the reaction kinetics and d-band shifting among metal atoms in the heterostructure (Ni2P-CuP2) that favor the HER and OER activities, respectively. In addition, the catalyst demonstrates an alternate transformation of solar energy to green H2 production using a standard silicon solar cell. This work unveils a smart design and synthesizes a highly stable electrocatalyst against an attractive paradigm of commercial water electrolysis for renewable electrochemical energy conversion.

14.
ACS Appl Mater Interfaces ; 9(29): 24600-24607, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672106

RESUMO

Bifunctional electrocatalysts are highly desired for overall water splitting. Herein, the design and fabrication of three-dimensional (3D) hierarchical earth-abundant transition bimetallic phosphide arrays constructed by one-dimensional tubular array that was derived from assembling two-dimensional nanosheet framework has been reported by tailoring the Co/Ni ratio and tunable morphologies, and zero-dimensional (0D) graphene dots were embedded on Co-Ni phosphide matrix to construct 0D/2D tubular array as a highly efficient electrode in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). On the basis of advanced merits, such as the high surface-active sites, well-dispersed graphene dots, and enhanced electron transfer capacity as well as the confinement effect of the graphene dots on the nanosheets, the integrated GDs/Co0.8Ni0.2P tubular arrays as anode and cathode exhibit excellent OER and HER performance. By use of GDs/Co0.8Ni0.2P arrays in the two-electrode setup of the device, a remarkable electrocatalytic performance for full water splitting has been achieved with a high current density of 10 mA cm-2 at 1.54 V and outstanding long-term operation stability in an alkaline environment, indicating a promising system based on nonprecious-metal electrocatalysts toward potential practical devices of overall water splitting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa