Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Small ; 20(40): e2310363, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38895967

RESUMO

Commitment to the 3Rs principle (Replacement, Reduction, and Refinement) led to the development of a cell-based system to measure buccal bioadhesion in vitro and replace the use of porcine buccal and esophageal tissues (PBT and PET, respectively). Additionally, the aim is to bridge the gap in knowledge regarding the bioadhesion properties of PBT and PET. The in vitro models are based on the human buccal epithelial cell line-TR146 without ("Model I") or with ("Model II") 5% (w/v) mucous layer. The in vitro setup also provides a method to evaluate the bioadhesion between two soft materials. Standard bioadhesive hydrogels (alginate, chitosan, and gelatin) are used to test and compare the results from the in vitro models to the ex vivo tissues. The ex vivo and in vitro models show increased bioadhesion as the applied force and contact time increases. Furthermore, Model I exhibits bioadhesion values-of alginate, chitosan, and gelatin-comparable to those obtained with PBT. It is also found that contact time and applied force similarly affect PBT and PET bioadhesion, while PET exhibits greater values. In conclusion, Model I can replace PBT for measuring bioadhesion and be incorporated into the experimental design of bioadhesive DDS, thus minimizing animal tissue usage.


Assuntos
Mucosa Bucal , Animais , Humanos , Suínos , Quitosana/química , Linhagem Celular , Adesividade , Hidrogéis/química , Alginatos/química , Bochecha , Gelatina/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
2.
Food Microbiol ; 120: 104480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431326

RESUMO

Biofilms are central to microbial life because of the advantage that this mode of life provides, whereas the planktonic form is considered to be transient in the environment. During the winemaking process, grape must and wines host a wide diversity of microorganisms able to grow in biofilm. This is the case of Brettanomyces bruxellensis considered the most harmful spoilage yeast, due to its negative sensory effect on wine and its ability to colonise stressful environments. In this study, the effect of different biotic and abiotic factors on the bioadhesion and biofilm formation capacities of B. bruxellensis was analyzed. Ethanol concentration and pH had negligible effect on yeast surface properties, pseudohyphal cell formation or bioadhesion, while the strain and genetic group factors strongly modulated the phenotypes studied. From a biotic point of view, the presence of two different strains of B. bruxellensis did not lead to a synergistic effect. A competition between the strains was rather observed during biofilm formation which seemed to be driven by the strain with the highest bioadhesion capacity. Finally, the presence of wine bacteria reduced the bioadhesion of B. bruxellensis. Due to biofilm formation, O. oeni cells were observed attached to B. bruxellensis as well as extracellular matrix on the surface of the cells.


Assuntos
Brettanomyces , Vinho , Saccharomyces cerevisiae , Microbiologia de Alimentos , Brettanomyces/metabolismo , Vinho/microbiologia
3.
Mar Drugs ; 22(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535439

RESUMO

Drug administration by oral delivery is the preferred route, regardless of some remaining challenges, such as short resident time and toxicity issues. One strategy to overcome these barriers is utilizing mucoadhesive vectors that can increase intestinal resident time and systemic uptake. In this study, biomimetic nanoparticles (NPs) were produced from 14 types of edible algae and evaluated for usage as oral DDSs by measuring their size, surface charge, morphology, encapsulation efficiency, mucoadhesion force, and cellular uptake into Caco-2 cells. The NPs composed of algal materials (aNPs) exhibited a spherical morphology with a size range of 126-606 nm and a surface charge of -9 to -38 mV. The mucoadhesive forces tested ex vivo against mice, pigs, and sheep intestines revealed significant variation between algae and animal models. Notably, Arthospira platensis (i.e., Spirulina) NPs (126 ± 2 nm, -38 ± 3 mV) consistently exhibited the highest mucoadhesive forces (up to 3127 ± 272 µN/mm²). Moreover, a correlation was found between high mucoadhesive force and high cellular uptake into Caco-2 cells, further supporting the potential of aNPs by indicating their ability to facilitate drug absorption into the human intestinal epithelium. The results presented herein serve as a proof of concept for the possibility of aNPs as oral drug delivery vehicles.


Assuntos
Biomimética , Nanopartículas , Humanos , Animais , Camundongos , Ovinos , Suínos , Células CACO-2 , Transporte Biológico , Sistemas de Liberação de Medicamentos
4.
AAPS PharmSciTech ; 25(5): 124, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822143

RESUMO

In transdermal applications of nonsteroidal anti-inflammatory drugs, the rheological and mechanical properties of the dosage form affect the performance of the drug. The aim of this study to develop emulgel and nanostructured lipid carrier NLC-based gel formulations containing ibuprofen, evaluate their mechanical properties, bioadhesive value and ex-vivo rabbit skin permeability. All formulations showed non-Newtonian pseudoplastic behavior and their viscosity values are suitable for topical application. The particle size of the nanostructured lipid carrier system was found to be 468 ± 21 nm, and the encapsulation efficiency was 95.58 ± 0.41%. According to the index of viscosity, consistency, firmness, and cohesiveness values obtained as a result of the back extrusion study, E2 formulation was found to be more suitable for transdermal application. The firmness and work of shear values of the E2 formulation, which has the highest viscosity value, were also found to be the highest and it was chosen as the most suitable formulation in terms of the spreadability test. The work of bioadhesion values of NLC-based gel and IBU-loaded NLC-based gel were found as 0.226 ± 0.028 and 0.181 ± 0.006 mJ/cm2 respectively. The percentages of IBU that penetrated through rabbit skin from the Ibuactive-Cream and the E2 were 87.4 ± 2.11% and 93.4 ± 2.72% after 24 h, respectively. When the penetration of ibuprofen through the skin was evaluated, it was found that the E2 formulation increased penetration due to its lipid and nanoparticle structure. As a result of these findings, it can be said that the NLC-based gel formulation will increase the therapeutic efficacy and will be a good alternative transdermal formulation.


Assuntos
Administração Cutânea , Anti-Inflamatórios não Esteroides , Portadores de Fármacos , Géis , Ibuprofeno , Lipídeos , Nanoestruturas , Absorção Cutânea , Pele , Ibuprofeno/administração & dosagem , Ibuprofeno/farmacocinética , Ibuprofeno/química , Coelhos , Animais , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Lipídeos/química , Géis/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/química , Viscosidade , Portadores de Fármacos/química , Nanoestruturas/química , Pele/metabolismo , Tamanho da Partícula , Química Farmacêutica/métodos , Permeabilidade , Reologia
5.
New Phytol ; 240(2): 770-783, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548082

RESUMO

Biofilm-forming benthic diatoms are key primary producers in coastal habitats, where they frequently dominate sunlit intertidal substrata. The development of gliding motility in raphid diatoms was a key molecular adaptation that contributed to their evolutionary success. However, the structure-function correlation between diatom adhesives utilized for gliding and their relationship to the extracellular matrix that constitutes the diatom biofilm is unknown. Here, we have used proteomics, immunolocalization, comparative genomics, phylogenetics and structural homology analysis to investigate the evolutionary history and function of diatom adhesive proteins. Our study identified eight proteins from the adhesive trails of Craspedostauros australis, of which four form a new protein family called Trailins that contain an enigmatic Choice-of-Anchor A (CAA) domain, which was acquired through horizontal gene transfer from bacteria. Notably, the CAA-domain shares a striking structural similarity with one of the most widespread domains found in ice-binding proteins (IPR021884). Our work offers new insights into the molecular basis for diatom biofilm formation, shedding light on the function and evolution of diatom adhesive proteins. This discovery suggests that there is a transition in the composition of biomolecules required for initial surface colonization and those utilized for 3D biofilm matrix formation.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Adesivos/metabolismo , Transferência Genética Horizontal , Biofilmes , Bactérias
6.
Food Microbiol ; 112: 104217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906300

RESUMO

Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.


Assuntos
Brettanomyces , Vinho , Microbiologia de Alimentos , Aço Inoxidável/análise , Brettanomyces/metabolismo , Vinho/análise , Saccharomyces cerevisiae
7.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674765

RESUMO

The study aims to investigate the adhesion of a hydrogel made of cross-linked low-methyl esterified pectin to rat intestinal serosa ex vivo. The adhesivity of the FeP hydrogel, which was cross-linked by Fe3+ cations, exceeded that of hydrogels cross-linked by Ca2+, Zn2+, and Al3+ cations. The concentration of the cross-linking cation failed to influence the adhesion of the pectin hydrogel to the serosa. The mechanical properties and surface microrelief of the pectin hydrogel were influenced by the type and concentration of the cross-linking cations. Fe3+ cations form a harder and more elastic gel than Ca2+ cations. Scanning electron microscopy analysis revealed the characteristic surface pattern of FeP hydrogel and its denser internal structure compared to Ca2+ cross-linked hydrogel. The effect of the salt composition of the adhesion medium was shown since the FeP hydrogel's adhesion to the serosa was lower in physiological solutions than in water, and adhesion in Hanks' solution was higher than in phosphate buffered saline. Serum proteins and peritoneal leukocytes did not interfere with the serosal adhesion of the FeP hydrogel. Pre-incubation in Hanks' solution for 24 h significantly reduced the adhesion of the FeP hydrogel to the serosa, regardless of the pH of the incubation. Thus, serosal adhesion combined with excellent stability and mechanical properties in physiological environments appeared to be advantages of the FeP hydrogel, demonstrating it to be a promising bioadhesive for tissue engineering.


Assuntos
Hidrogéis , Malus , Ratos , Animais , Hidrogéis/química , Íons , Membrana Serosa , Pectinas/química
8.
Int J Dent Hyg ; 21(1): 178-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075780

RESUMO

OBJECTIVE: The aim of this study was to investigate the direct and indirect influence of fluoridated toothpastes and fluoride-free toothpaste with hydroxyapatite (HAP) as active ingredient on initial bacterial colonization on enamel in situ. METHODS: For this clinical-experimental pilot study, eight subjects were instructed to brush their teeth with three different toothpastes (Elmex® : 1400 ppm AmF, Meridol® : 1400 ppm AmF +SnF2, Karex® : HAP), using each for two consecutive days. As a control, brushing without toothpaste was performed. To evaluate bacterial colonization, subject wore splints with buccally placed bovine enamel platelets overnight. Two modes were tested. In a first pass (regimen A), the splints were inserted after toothbrushing to examine the indirect effects of the dentifrices. In order to investigate the direct effects, the specimens were brushed in situ in a second pass (regimen B). Biofilm formation was visualized and quantified using fluorescence microscopy (DAPI and BacLight) and transmission electron microscopy (TEM). RESULTS: For brushing regimen A (indirect effect of dentifrices), no statistical differences were detected between any of the tested dentifrices or the control. Likewise, no statistically significant differences were recorded for brushing regimen B (direct effect of dentifrices). Furthermore, no differences between the different brushing techniques were determined with regard to the ultrastructure of the overnight biofilm. CONCLUSION: Within the limitations of the present pilot study, it can be concluded that in patients with good oral hygiene, dentifrices and their chemical composition have no statistically significant effect on the initial bacterial colonization of enamel platelets in situ, irrespectively of the mode of application.


Assuntos
Dentifrícios , Cremes Dentais , Humanos , Animais , Bovinos , Cremes Dentais/farmacologia , Cremes Dentais/química , Dentifrícios/farmacologia , Projetos Piloto , Fluoretos , Esmalte Dentário , Escovação Dentária , Fluoreto de Sódio
9.
Small ; 18(26): e2107559, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35606684

RESUMO

Decades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties-charge and bioadhesiveness-as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements. The mechanism relies on the idea of biocoating-the coating of NPs with mucus-which alters their surface properties, and ultimately their systemic uptake. Utilizing this mechanism, several coated NPs are tested in vitro, ex vivo, and in vivo, and biocoating is found to affect NPs size, zeta-potential, mucosal diffusion coefficient, the extent of aggregation, and in vivo/in vitro/ex vivo correlation. Based on these results, low molecular weight polylactic acid exhibits a 21-fold increase in mucosal diffusion coefficient after precoating as compared to uncoated particles, as well as 20% less aggregation, and about 30% uptake to the blood in vivo. These discoveries suggest that biocoating reduces negative NP charge which results in an enhanced mucosal diffusion rate, increased gastrointestinal retention time, and high systemic uptake.


Assuntos
Portadores de Fármacos , Nanopartículas , Administração Oral , Sistemas de Liberação de Medicamentos/métodos , Muco , Polímeros
10.
Am J Bot ; 109(6): 874-886, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608083

RESUMO

PREMISE: For vascular epiphytes, secure attachment to their hosts is vital for survival. Yet studies detailing the adhesion mechanism of epiphytes to their substrate are scarce. Examination of the root hair-substrate interface is essential to understand the attachment mechanism of epiphytes to their substrate. This study also investigated how substrate microroughness relates to the root-substrate attachment strength and the underlying mechanism(s). METHODS: Seeds of Anthurium obtusum were germinated, and seedlings were transferred onto substrates made of epoxy resin with different defined roughness. After 2 months of growth, roots that adhered to the resin tiles were subjected to anchorage tests, and root hair morphology at different roughness levels was analyzed using light and cryo scanning electron microscopy. RESULTS: The highest maximum peeling force was recorded on the smooth surface (glass replica, 0 µm). Maximum peeling force was significantly higher on fine roughness (0, 0.3, 12 µm) than on coarse (162 µm). Root hair morphology varied according to the roughness of the substrate. On smoother surfaces, root hairs were flattened to achieve large surface contact with the substrate. Attachment was mainly by adhesion with the presence of a glue-like substance. On coarser surfaces, root hairs were tubular and conformed to spaces between the asperities on the surface. Attachment was mainly via mechanical interlocking of root hairs and substrate. CONCLUSIONS: This study demonstrates for the first time that the attachment mechanism of epiphytes varies depending on substrate microtopography, which is important for understanding epiphyte attachment on natural substrates varying in roughness.


Assuntos
Araceae , Plântula , Microscopia Eletrônica de Varredura
11.
Proc Natl Acad Sci U S A ; 116(10): 4297-4306, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782790

RESUMO

The flatworm Macrostomum lignano features a duo-gland adhesive system that allows it to repeatedly attach to and release from substrates in seawater within a minute. However, little is known about the molecules involved in this temporary adhesion. In this study, we show that the attachment of M. lignano relies on the secretion of two large adhesive proteins, M. lignano adhesion protein 1 (Mlig-ap1) and Mlig-ap2. We revealed that both proteins are expressed in the adhesive gland cells and that their distribution within the adhesive footprints was spatially restricted. RNA interference knockdown experiments demonstrated the essential function of these two proteins in flatworm adhesion. Negatively charged modified sugars in the surrounding water inhibited flatworm attachment, while positively charged molecules impeded detachment. In addition, we found that M. lignano could not adhere to strongly hydrated surfaces. We propose an attachment-release model where Mlig-ap2 attaches to the substrate and Mlig-ap1 exhibits a cohesive function. A small negatively charged molecule is secreted that interferes with Mlig-ap1, inducing detachment. These findings are of relevance for fundamental adhesion science and efforts to mitigate biofouling. Further, this model of flatworm temporary adhesion may serve as the starting point for the development of synthetic reversible adhesion systems for medicinal and industrial applications.


Assuntos
Adesão Celular/fisiologia , Gônadas/metabolismo , Proteínas de Helminto/metabolismo , Platelmintos/fisiologia , Adesivos , Animais , Feminino , Técnicas de Silenciamento de Genes , Gônadas/citologia , Proteínas de Helminto/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Platelmintos/citologia , Platelmintos/metabolismo , Interferência de RNA , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 116(3): 738-743, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602456

RESUMO

Attaching hydrogels to soft internal tissues is a key to the development of a number of biomedical devices. Nevertheless, the wet nature of hydrogels and tissues renders this adhesion most difficult to achieve and control. Here, we show that the transport of fluids across hydrogel-tissue interfaces plays a central role in adhesion. Using ex vivo peeling experiments on porcine liver, we characterized the adhesion between model hydrogel membranes and the liver capsule and parenchyma. By varying the contact time, the tissue hydration, and the swelling ratio of the hydrogel membrane, a transition between two peeling regimes is found: a lubricated regime where a liquid layer wets the interface, yielding low adhesion energies (0.1 J/m2 to 1 J/m2), and an adhesive regime with a solid binding between hydrogel and tissues and higher adhesion energies (1 J/m2 to 10 J/m2). We show that this transition corresponds to a draining of the interface inducing a local dehydration of the tissues, which become intrinsically adhesive. A simple model taking into account the microanatomy of tissues captures the transition for both the liver capsule and parenchyma. In vivo experiments demonstrate that this effect still holds on actively hydrated tissues like the liver capsule and show that adhesion can be strongly enhanced when using superabsorbent hydrogel meshes. These results shed light on the design of predictive bioadhesion tests as well as on the development of improved bioadhesive strategies exploiting interfacial fluid transport.


Assuntos
Hidrogéis/química , Adesivos Teciduais/química , Adesividade , Animais , Desidratação , Fígado , Estado de Hidratação do Organismo , Suínos
13.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163081

RESUMO

Extensive biofilm formation on materials used in restorative dentistry is a common reason for their failure and the development of oral diseases like peri-implantitis or secondary caries. Therefore, novel materials and strategies that result in reduced biofouling capacities are urgently sought. Previous research suggests that surface structures in the range of bacterial cell sizes seem to be a promising approach to modulate bacterial adhesion and biofilm formation. Here we investigated bioadhesion within the oral cavity on a low surface energy material (perfluorpolyether) with different texture types (line-, hole-, pillar-like), feature sizes in a range from 0.7-4.5 µm and graded distances (0.7-130.5 µm). As a model system, the materials were fixed on splints and exposed to the oral cavity. We analyzed the enzymatic activity of amylase and lysozyme, pellicle formation, and bacterial colonization after 8 h intraoral exposure. In opposite to in vitro experiments, these in situ experiments revealed no clear signs of altered bacterial surface colonization regarding structure dimensions and texture types compared to unstructured substrates or natural enamel. In part, there seemed to be a decreasing trend of adherent cells with increasing periodicities and structure sizes, but this pattern was weak and irregular. Pellicle formation took place on all substrates in an unaltered manner. However, pellicle formation was most pronounced within recessed areas thereby partially masking the three-dimensional character of the surfaces. As the natural pellicle layer is obviously the most dominant prerequisite for bacterial adhesion, colonization in the oral environment cannot be easily controlled by structural means.


Assuntos
Bactérias/metabolismo , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Película Dentária/fisiologia , Modelos Biológicos , Boca/fisiologia , Bactérias/crescimento & desenvolvimento , Película Dentária/química , Película Dentária/microbiologia , Humanos , Boca/química , Boca/microbiologia , Propriedades de Superfície
14.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216484

RESUMO

Local drug delivery is an effective strategy for achieving direct and instant therapeutic effects. Current clinical treatments have fallen short and are limited by traditional technologies. Bioadhesive nanoparticles (NPs), however, may be a promising carrier for optimized local drug delivery, offering prolonged drug retention time and steadily maintained therapeutic concentrations. In addition, the possibility of clinical applications of this platform are abundant, as most polymers used for bioadhesion are both biodegradable and biocompatible. This review highlights the major advances in the investigations of polymer-based bioadhesive nanoparticles and their innumerable applications in local drug delivery.


Assuntos
Adesivos/química , Nanopartículas/química , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Humanos , Polímeros/química
15.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628516

RESUMO

Intimal hyperplasia, a vascular pathology characterized by vessel wall thickening, is implicated in vein graft failures. For efficient prevention, a biodegradable drug delivery system should be applied externally to the graft for an extended time. Finding a gel suitable for such a system is challenging. We have synthesized HA-Dopamine conjugates (HA-Dop) with several degrees of substitution (DS) and used two crosslinking methods: initiator-free crosslinking by basic pH shift or commonly used crosslinking by a strong oxidizer, sodium periodate. The rheological properties, bioadhesion to vascular tissue, cytocompatibility with fibroblasts have been compared for both methods. Our results suggest that initiator-free crosslinking provides HA-Dop gels with more adequate properties with regards to vascular application than crosslinking by strong oxidizer. We have also established the cytocompatibility of the initiator-free crosslinked HA-Dop gels and the cytotoxicity of dopamine-sodium periodate combinations. Furthermore, we have incorporated a drug with anti-restenotic effect in perivascular application, atorvastatin, into the gel, which showed adequate release profile for intimal hyperplasia prevention. The oxidizer-free formulation with improved bioadhesion holds promise as an efficient and safe drug delivery system for vascular applications.


Assuntos
Ácido Hialurônico , Hidrogéis , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Dopamina/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hiperplasia
16.
AAPS PharmSciTech ; 23(4): 104, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381947

RESUMO

Herein, we developed an ethosomal hydrogel based on three types of ethosomes: simple, mixed (surfactant-based micelles and lipid vesicles) or binary (comprising two type of alcohols). Ethanol injection was employed for vesicles preparation, and sodium alginate, as gelling agent. We purposed the local-transdermal administration of the off-the-shelf retinoid fenretinide (FENR) for chemoprevention of breast cancer. Rheograms and flow index values for alginate dispersion (without ethosomes) and hydrogels containing simple, mixed or binary ethosomes suggested pseudoplastic behavior. An increase in the apparent viscosity was observed upon ethosome incorporation. The ethosomal hydrogel displayed increased bioadhesion compared to the alginate dispersion, suggesting that the lipid vesicles contribute to the gelling and bioadhesion processes. In the Hen's Egg Test-Chorioallantoic Membrane model, few spots of lysis and hemorrhage were observed for formulations containing simple (score of 2) and mixed vesicles (score 4), but not for the hydrogel based on the binary system, indicating its lower irritation potential. The binary ethosomal hydrogel provided a slower FENR in vitro release and delivered 2.6-fold less drug into viable skin layers compared to the ethosome dispersion, supporting the ability of the gel matrix to slow down drug release. The ethosomal hydrogel decreased by ~ five-fold the IC50 values of FENR in MCF-7 cells. In conclusion, binary ethosomal gels presented technological advantages, provided sustained drug release and skin penetration, and did not preclude drug cytotoxic effects, supporting their potential applicability as topical chemopreventive systems.


Assuntos
Neoplasias da Mama , Fenretinida , Administração Cutânea , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Galinhas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Fenretinida/metabolismo , Fenretinida/farmacologia , Humanos , Hidrogéis/metabolismo , Lipossomos/metabolismo , Pele/metabolismo , Absorção Cutânea
17.
J Exp Biol ; 224(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34581416

RESUMO

Many insects can climb smooth surfaces using hairy adhesive pads on their legs, mediated by tarsal fluid secretions. It was previously shown that a terrestrial beetle can even adhere and walk underwater. The naturally hydrophobic hairs trap an air bubble around the pads, allowing the hairs to make contact with the substrate as in air. However, it remained unclear to what extent such an air bubble is necessary for underwater adhesion. To investigate the role of the bubble, we measured the adhesive forces in individual legs of live but constrained ladybird beetles underwater in the presence and absence of a trapped bubble and compared these with its adhesion in air. Our experiments revealed that on a hydrophobic substrate, even without a bubble, the pads show adhesion comparable to that in air. On a hydrophilic substrate, underwater adhesion is significantly reduced, with or without a trapped bubble. We modelled the adhesion of a hairy pad using capillary forces. Coherent with our experiments, the model demonstrates that the wetting properties of the tarsal fluid alone can determine the ladybird beetles' adhesion to smooth surfaces in both air and underwater conditions and that an air bubble is not a prerequisite for their underwater adhesion. This study highlights how such a mediating fluid can serve as a potential strategy to achieve underwater adhesion via capillary forces, which could inspire artificial adhesives for underwater applications.


Assuntos
Adesivos , Besouros , Adesividade , Animais , Interações Hidrofóbicas e Hidrofílicas , Insetos , Molhabilidade
18.
Environ Monit Assess ; 193(11): 698, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34618240

RESUMO

The aim of this research was to test the potential of applying a flow cytometric procedure to evaluate the impact of concrete compounds' release to the freshwater microbiome. Cells from the collected samples were stained with a fluorogenic redox indicator dye that measures the redox potential of microbial cells. This novel approach was combined with the assessment of microorganisms' penetration into the internal structures of concrete using the Rose Bengal sodium salt staining. Rose Bengal staining revealed an intense fouling of the upper and side walls of the concrete cubes and also indicated the penetration of microorganisms inside the concrete as observed for the cubes' cross-sections. Flow cytometric cellular redox potential measurement revealed high percentages of active cells within the concrete's porous structures and in non-exposed water (32.7% and 30.2% of active cells) versus samples from exposed water and concrete's outer surfaces (6.8%, 6.1%, and 3.3% of active cells). The results demonstrated a detrimental impact of hydro-technical concrete on the vitality of microbial cells within the freshwater environment. Tested protocol by analyzing the physiology of microbial cells improved the functional description of complex communities to evaluate the fate of contaminants present in the concrete-based hydro-technical infrastructure.


Assuntos
Materiais de Construção , Monitoramento Ambiental , Microbiota , Poluentes Químicos da Água , Citometria de Fluxo , Água Doce
19.
Angew Chem Int Ed Engl ; 60(21): 12082-12089, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33647184

RESUMO

Complex coacervation enables important wet adhesion processes in natural and artificial systems. However, existed synthetic coacervate adhesives show limited wet adhesion properties, non-thermoresponsiveness, and inferior biodegradability, greatly hampering their translations. Herein, by harnessing supramolecular assembly and rational protein design, we present a temperature-sensitive wet bioadhesive fabricated through recombinant protein and surfactant. Mechanical performance of the bioglue system is actively tunable with thermal triggers. In cold condition, adhesion strength of the bioadhesive was only about 50 kPa. By increasing temperature, the strength presented up to 600 kPa, which is remarkably stronger than other biological counterparts. This is probably due to the thermally triggered phase transition of the engineered protein and the formation of coacervate, thus leading to the enhanced wet adhesion bonding.


Assuntos
Adesivos/química , Proteínas Recombinantes/química , Tensoativos/química , Substâncias Viscoelásticas/química , Adesividade , Transição de Fase , Temperatura
20.
Small ; 16(18): e2000043, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32307812

RESUMO

Long-distance wireless actuation indicates precise remote control over materials, sensors, and devices that are widely utilized in biomedical, defence, disaster relief, deep ocean, and outer space applications to replace human work. Unlike radio frequency (RF) control, which has low tolerance toward electromagnetic interference (EMI), light control represents a promising method to overcome EMI. Nonetheless, long-distance light-controlled wireless actuation able to compete with RF control has not been achieved until now due to the lack of highly light-sensitive actuator designs. Here, it is demonstrate that amyloid-like protein aggregates can organize photomodule single-layer reduced graphene oxide (rGO) into a well-defined multilayer stack to display long-distance photoactuation. The amyloid-like proteinaceous component docks the rGO layers together to form a hybrid film, which can reliably adhere onto various material surfaces with robust interfacial adhesion. The sensitive photothermal effect and a fast bending in 1 s to switch a circuit are achieved after forming the film on a plastic substrate and irradiating the bilayer film with a blue laser from 100 m away. A photoactuation distance of 50 km can be further extrapolated based on a commercial high-power laser. This study reveals the great potential of amyloid-like aggregates in remote light control of robots and devices.


Assuntos
Grafite/química , Lasers , Luz , Proteínas/química , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa