Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 52, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183478

RESUMO

For a better understanding of the distribution of depth-dependent electrochemically active bacteria at in the anode zone, a customized system in a microbial fuel cell (MFC) packed with granular activated carbon (GAC) was developed and subsequently optimized via electrochemical tests. The constructed MFC system was sequentially operated using two types of matrice solutions: artificially controlled compositions (i.e., artificial wastewater, AW) and solutions obtained directly from actual sewage-treating municipal plants (i.e., municipal wastewater, MW). Notably, significant difference(s) of system efficiencies between AW or MW matrices were observed via performance tests, in that the electricity production capacity under MW matrices is < 25% that of the AW matrices. Interestingly, species of Escherichia coli (E. coli) sampled from the GAC bed (P1: deeper region in GAC bed, P2: shallow region of GAC near electrolytes) exhibited an average relative abundance of 75 to 90% in AW and a relative abundance of approximately 10% in MW, while a lower relative abundance of E. coli was found in both the AW and MW anolyte samples (L). Moreover, similar bacterial communities were identified in samples P1 and P2 for both the AW and MW solutions, indicating a comparable distribution of bacterial communities over the anode area. These results provide new insights into E. coli contribution in power production for the GAC-packed MFC systems (i.e., despite the low contents of Geobacter (> 8%) and Shewanella (> 1%)) for future applications in sustainable energy research. KEY POINTS: • A microbial community analysis for depth-dependence in biofilm was developed. • The system was operated with two matrices; electrochemical performance was assessed. • E. coli spp. was distinctly found in anode zone layers composed of activated carbon.


Assuntos
Fontes de Energia Bioelétrica , Prevalência , Carvão Vegetal , Escherichia coli/genética , Águas Residuárias , Biofilmes
2.
Small ; 19(10): e2206257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549673

RESUMO

This work focusses on developing a hybrid enzyme biofuel cell-based self-powered biosensor with appreciable stability and durability using murine leukemia fusion gene fragments (tDNA) as a model analyte. The cell consists of a Ti3 C2 Tx /multiwalled carbon nanotube/gold nanoparticle/glucose oxidase bioanode and a Zn/Co-modified carbon nanotube cathode. The bioanode uniquely exhibits strong electron transfer ability and a high surface area for the loading of 1.14 × 10-9  mol cm-2 glucose oxidase to catalyze glucose oxidation. Meanwhile, the abiotic cathode with a high oxygen reduction reaction activity negates the use of conventional bioenzymes as catalysts, which aids in extending the stability and durability of the sensing system. The biosensor offers a 0.1 fm-1 nm linear range and a detection limit of 0.022 fm tDNA. Additionally, the biosensor demonstrates a reproducibility of ≈4.85% and retains ≈87.42% of the initial maximal power density after a 4-week storage at 4 °C, verifying a significantly improved long-term stability.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Animais , Camundongos , Glucose Oxidase/metabolismo , Biocombustíveis , Ouro , Reprodutibilidade dos Testes , Titânio , Eletrodos , Glucose
3.
Environ Sci Technol ; 57(31): 11561-11571, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498945

RESUMO

Bioelectrochemical systems (BESs) are considered to be energy-efficient to convert ammonium, which is present in wastewater. The application of BESs as a technology to treat wastewater on an industrial scale is hindered by the slow removal rate and lack of understanding of the underlying ammonium conversion pathways. This study shows ammonium oxidation rates up to 228 ± 0.4 g-N m-3 d-1 under microoxic conditions (dissolved oxygen at 0.02-0.2 mg-O2/L), which is a significant improvement compared to anoxic conditions (120 ± 21 g-N m-3 d-1). We found that this enhancement was related to the formation of hydroxylamine (NH2OH), which is rate limiting in ammonium oxidation by ammonia-oxidizing microorganisms. NH2OH was intermediate in both the absence and presence of oxygen. The dominant end-product of ammonium oxidation was dinitrogen gas, with about 75% conversion efficiency in the presence of a microoxic level of dissolved oxygen and 100% conversion efficiency in the absence of oxygen. This work elucidates the dominant pathways under microoxic and anoxic conditions which is a step toward the application of BESs for ammonium removal in wastewater treatment.


Assuntos
Compostos de Amônio , Compostos de Amônio/química , Águas Residuárias , Reatores Biológicos , Oxirredução , Oxigênio , Nitrogênio/metabolismo
4.
J Environ Manage ; 319: 115719, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849928

RESUMO

Efficient and harmless disposal of landfill leachate has attracted increasing attention. In this study, the bio-electro-Fenton method was investigated and developed to degrade the organic compounds in landfill leachate by hydroxyl radical oxidation. The optimal operational parameters (i.e., pH and external voltage) of the bio-electro-Fenton system were detected. Under the conditions of pH 2, 0.6 V, the highest total chemical oxygen demand (COD) decrement efficiency was obtained (about 70%), with apparent removal constant at 6 h (kapp-6h) of about 0.12 h-1. Subsequently, to further increase the degradation efficiency, functionalized carbon black and functionalized carbon nanotube (FCNT) were prepared as catalysts for the cathode electrode modification. With 0.4 mg/cm2 FCNT coated on the cathode electrode, 91.3% of the organic compounds were degraded, remaining only 84 mg/L COD (kapp-6h = 0.24 h-1). In all the reactors, the COD was mainly decreased in 0-6 h, contributing to over 68% of the total degradation efficiency. In the bio-electro-Fenton system, the bio-anode electrode could enhance H2O2 production and the conversion between Fe2+ and Fe3+ by strengthening electrons generation and transportation via the oxidation of organics by biofilms (dominant with Geobacter) covered on the carbon brush.


Assuntos
Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Eletrodos , Peróxido de Hidrogênio/química , Ferro/química , Compostos Orgânicos , Oxirredução , Poluentes Químicos da Água/química
5.
Anal Biochem ; 631: 114363, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478705

RESUMO

Herein, to improve the current density and sensitivity for biofuel cell and glucose sensing application, a bioanode based on redox polymer (PEI-Fc) binding polydopamine (PDA) coated MWCNTs (PEI-Fc/PDA/MWCNTs) nanocomposite and glucose oxidase (GOD) was fabricated. PDA/MWCNTs nanocomposite was prepared by spontaneous self-polymerization of dopamine on MWCNTs surface and the PEI-Fc/PDA/MWCNTs nanocomposite was prepared by a simple self-assembly method. The PEI-Fc/PDA/MWCNTs nanocomposite and the resulting bioanode were fully characterized. A maximum current density of 0.73 mA cm-2 at the resulting bioanode was obtained by linear sweep voltammetry (LSV) at the scan rate of 50 mV s-1 with 20 mM glucose concentration. Moreover, a linear range up to 4 mM, a high sensitivity of 57.2 µA mM-1 cm-2, a fast response time reaching 95% of the steady current (2 s) and a low limit of detection (0.024 mM) were achieved. The amperometric method demonstrated both the sensitivity and the stability of the bioanode for glucose-sensing was improved by the employed PDA layer. Finally, the biosensor was used for glucose detection in human serum samples showing good recoveries. This study proposed an excellent functional material prepared by a facile self-assembled method for applying in biofuel cells and second-generation biosensors.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/instrumentação , Eletrodos , Glucose/análise , Nanocompostos/química , Técnicas Biossensoriais/métodos , Glicemia/análise , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Glucose/metabolismo , Humanos , Indóis/química , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Oxirredução , Polimerização , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espectral Raman
6.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948296

RESUMO

With the rapid decline of fossil fuels, various types of biofuel cells (BFCs) are being developed as an alternative energy source. BFCs based on multi-enzyme cascade reactions are utilized to extract more electrons from substrates. Thus, more power density is obtained from a single molucule of substrate. In the present study, a bioanode that could extract six electrons from a single molecule of L-proline via a three-enzyme cascade reaction was developed and investigated for its possible use in BFCs. These enzymes were immobilized on the electrode to ensure highly efficient electron transfer. Then, oriented immobilization of enzymes was achieved using two types of self-assembled monolayers (SAMs). In addition, a microfluidic system was incorporated to achieve efficient electron transfer. The microfluidic system, in which the electrodes were arranged in a tooth-shaped comb, allowed for substrates to be supplied continuously to the cascade, which resulted in smooth electron transfer. Finally, we developed a high-performance bioanode which resulted in the accumulation of higher current density compared to that of a gold disc electrode (205.8 µA cm-2: approximately 187 times higher). This presents an opportunity for using the bioanode to develop high-performance BFCs in the future.


Assuntos
Microfluídica/métodos , Fontes de Energia Bioelétrica , Técnicas Biossensoriais/métodos , Eletrodos , Elétrons , Enzimas Imobilizadas/química , Ouro/química , Oxirredução
7.
Biotechnol Lett ; 40(1): 63-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28940098

RESUMO

OBJECTIVES: To develop a bioelectrochemical system (BES) to couple the biooxidation of chalcopyrite (CuFeS2), bioelectrogenesis, and the cathodic Cu2+ reduction, bioanodes of acidophilic (pH < 2) and aerobic chemolithoautotrophic bacteria Acidithiobacillus thiooxidans (sulfur oxidizing) and Leptospirillum sp. (Fe2+ oxidizing) were used. RESULTS: CuFeS2 biooxidation increases the charge transfer from the media due to the bioleaching of Cu and Fe. The biofilm on a graphite bar endows a more electropositive (anodic) character to the bioelectrode. By adding the bioleachate generated by both bacteria into the anodic chamber, the acidic bioleachate provides the faradaic intensity. The maximum current density was 0.86 ± 19 mA cm-2 due to the low potential of the BES of 0.18 ± 0.02 V. Such low potential was sufficient for the cathodic deposit of Cu2+. CONCLUSIONS: This work demonstrates a proof of concept for energy savings for mining industries: bioanodes of A. thiooxidans and Leptospirillum sp. are electroactive during the biooxidation of CuFeS2.


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Fontes de Energia Bioelétrica , Cobre/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Eletrodos/microbiologia , Oxirredução
8.
Biotechnol Bioeng ; 111(10): 1931-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24729040

RESUMO

The placement of the reference electrode (RE) in various bioelectrochemical systems is often varied to accommodate different reactor configurations. While the effect of the RE placement is well understood from a strictly electrochemistry perspective, there are impacts on exoelectrogenic biofilms in engineered systems that have not been adequately addressed. Varying distances between the working electrode (WE) and the RE, or the RE and the counter electrode (CE) in microbial fuel cells (MFCs) can alter bioanode characteristics. With well-spaced anode and cathode distances in an MFC, increasing the distance between the RE and anode (WE) altered bioanode cyclic voltammograms (CVs) due to the uncompensated ohmic drop. Electrochemical impedance spectra (EIS) also changed with RE distances, resulting in a calculated increase in anode resistance that varied between 17 and 31 Ω (-0.2 V). While WE potentials could be corrected with ohmic drop compensation during the CV tests, they could not be automatically corrected by the potentiostat in the EIS tests. The electrochemical characteristics of bioanodes were altered by their acclimation to different anode potentials that resulted from varying the distance between the RE and the CE (cathode). These differences were true changes in biofilm characteristics because the CVs were electrochemically independent of conditions resulting from changing CE to RE distances. Placing the RE outside of the current path enabled accurate bioanode characterization using CVs and EIS due to negligible ohmic resistances (0.4 Ω). It is therefore concluded for bioelectrochemical systems that when possible, the RE should be placed outside the current path and near the WE, as this will result in more accurate representation of bioanode characteristics.


Assuntos
Fontes de Energia Bioelétrica , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Desenho de Equipamento
9.
Artigo em Inglês | MEDLINE | ID: mdl-24967560

RESUMO

In this study, a dual chamber MFC was constructed for simultaneous removal of organic matter and nitrogenous pollutants and bioelectricity generation from synthetic and complex industrial wastewaters and it was operated in batch and continuous mode. When the cell potential was stable after 16 days of batch mode operation, the MFC was converted to continuous mode (from batch mode) and operated for 125 days with different organic loading rates (OLR) and ammonia loading rates (ALR) and fixed hydraulic retention time (HRT) of 40 h. The OLR of 1.49 kg COD m(-3) d(-1) and ALR of 0.58 kg NH3(-) m(-3) d(-1), for anodic and cathodic chambers, respectively, gave the best results. The highest value of cell potential on these OLRs was 310 mV with current density of 85.11 mA m(-2), power density of 26.38 mW m(-2) and volumetric power density of 192.20 mW m(-3). During this period, COD reduction was 78-83% in the anodic chamber and the ammonia reduction was 36-38%. After stable operation with synthetic wastewater one case study was performed with complex industrial wastewater. Continuous mode operation was performed at two different OLR and HRT with a constant ALR. A stable power density and volumetric power density of 23.56 mW m(-2) and 112.50 mW m(-3), respectively were achieved after 24 days of continuous operation at an OLR of 0.35 kg COD/m(3) day with an ALR of 0.43 kg NH3(-) m(-3) day(-1) and corresponding HRT of 68 h. A maximum of 89% COD removal and 40% removal of ammonia was obtained after 50 days. A stable voltage of 300 mV was obtained across 1000 Ω resistance. These findings suggest that BMFC can be used for the treatment of industrial wastewater, with carbon removal in anodic chamber and electricity generation.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Compostos Orgânicos/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Amônia/química , Bactérias/química , Biodegradação Ambiental , Eletricidade , Compostos Orgânicos/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
10.
Bioelectrochemistry ; 156: 108618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988978

RESUMO

Microbial Fuel Cells (MFC) convert energy stored in chemicals into electrical energy thanks to exoelectrogenic microorganisms who also play a crucial role in geochemical cycles in their natural environment, including that of iron. In this study, we investigated paleomarine sediments as inoculum for bioanode development in MFCs. These sediments were formed under anoxic conditions ca. 113 million years ago and are rich in clay minerals, organic matter, and iron. The marlstone inoculum was incubated in the anolyte of an MFC using acetate as the added electron donor and ferricyanide as the electron acceptor in the catholyte. After seven weeks of incubation, the current density increased to 0.15 mA.cm-2 and a stable + 700 mV open circuit potential was reached. Community analysis revealed the presence of two exoelectrogenic bacterial genera, Geovibrio and Geobacter. Development of electroactive biofilms was correlated to bulk chemical transformations of the sediment inoculum with an increase in the Fe(II) to Fetotal ratio. Comparisons to sediments sterilized prior to inoculation confirmed that bioanode development derives from the native microbiota of these paleomarine sediments. This study illustrates the feasibility of developing exoelectrogenic biofilms from iron-rich marlstone and has implications for the role of such bacteria in broader paleoenvironmental phenomena.


Assuntos
Fontes de Energia Bioelétrica , Ferro , Eletrodos , Bactérias , Eletricidade , Fontes de Energia Bioelétrica/microbiologia , Biofilmes
11.
Bioelectrochemistry ; 158: 108706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608340

RESUMO

Key nutrients, such as nitrogen measured as total ammonium nitrogen (TAN), could be recycled from hydrolysed human urine back to fertiliser use. Bioelectrochemical systems (BESs) are an interesting, low-energy option for realising this. However, the high TAN concentration (> 5 g L-1) and pH (> 9) of hydrolysed urine can inhibit microbial growth and hinder the enrichment of an electroactive biofilm at the anode. This study investigated a new strategy for bioanode inoculation by mixing real hydrolysed urine with thickened waste activated sludge (TWAS) from a municipal wastewater treatment plant at different volumetric ratios. The addition of TWAS diluted the high TAN concentration of hydrolysed urine (5.2 ± 0.3 g L-1) to 2.6-5.1 g L-1, while the pH of the inoculation mixtures remained > 9 and soluble chemical oxygen demand (sCOD) at 5.6-6.7 g L-1. Despite the high pH, current generation started within 24 h for all reactors, and robust bioanodes tolerant of continuous feeding with undiluted hydrolysed urine were enriched within 11 days of start-up. Current output and Coulombic efficiency decreased with increasing initial hydrolysed urine fraction. The anodes inoculated with the highest sCOD-to-TAN ratio (2.1) performed the best, which suggests that high organics levels can protect microbes from inhibition even at elevated TAN concentrations.


Assuntos
Fontes de Energia Bioelétrica , Urina , Humanos , Urina/química , Urina/microbiologia , Hidrólise , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Biofilmes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Esgotos/microbiologia , Esgotos/química
12.
ACS Appl Bio Mater ; 7(5): 2734-2740, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38651321

RESUMO

3D printing of a living bioanode holds the potential for the rapid and efficient production of bioelectrochemistry systems. However, the ink (such as sodium alginate, SA) that formed the matrix of the 3D-printed bioanode may hinder extracellular electron transfer (EET) between the microorganism and conductive materials. Here, we proposed a biomimetic design of a 3D-printed Shewanella bioanode, wherein riboflavin (RF) was modified on carbon black (CB) to serve as a redox substance for microbial EET. By introducing the medicated EET pathways, the 3D-printed bioanode obtained a maximum power density of 252 ± 12 mW/m2, which was 1.7 and 60.5 times higher than those of SA-CB (92 ± 10 mW/m2) and a bare carbon cloth anode (3.8 ± 0.4 mW/m2). Adding RF reduced the charge-transfer resistance of a 3D-printed bioanode by 75% (189.5 ± 18.7 vs 47.3 ± 7.8 Ω), indicating a significant acceleration in the EET efficiency within the bioanode. This work provided a fundamental and instrumental concept for constructing a 3D-printed bioanode.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Impressão Tridimensional , Riboflavina , Shewanella , Riboflavina/química , Riboflavina/metabolismo , Shewanella/metabolismo , Transporte de Elétrons , Materiais Biocompatíveis/química , Fontes de Energia Bioelétrica , Eletrodos , Fuligem/química , Tamanho da Partícula , Tinta
13.
Biofilm ; 6: 100161, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37859795

RESUMO

In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine Desulfobacterota metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to Geobacter benzoatilyticus competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.

14.
Chemosphere ; 328: 138584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019398

RESUMO

The toxic perfluorooctanoic acid (PFOA) is widely spread in terrestrial and aquatic habitats owing to its resistance to conventional degradation processes. Advanced techniques to degrade PFOA requires drastic conditions with high energy cost. In this study, we investigated PFOA biodegradation in a simple dual biocatalyzed microbial electrosynthesis system (MES). Different PFOA loadings (1, 5, and 10 ppm) were tested and a biodegradation of 91% was observed within 120 h. Propionate production improved and short-carbon-chain PFOA intermediates were detected, which confirmed PFOA biodegradation. However, the current density decreased, indicating an inhibitory effect of PFOA. High-throughput biofilm analysis revealed that PFOA regulated the microbial flora. Microbial community analysis showed enrichment of the more resilient and PFOA adaptive microbes, including Methanosarcina and Petrimonas. Our study promotes the potential use of dual biocatalyzed MES system as an environment-friendly and inexpensive method to remediate PFOA and provides a new direction for bioremediation research.


Assuntos
Fluorocarbonos , Biodegradação Ambiental , Fluorocarbonos/metabolismo , Caprilatos/metabolismo
15.
Waste Manag ; 159: 27-38, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731254

RESUMO

This study qualitatively assessed the impacts of different start-up strategies on the performance of methane (CH4) production from cattle manure (CM) in electromethanogenic reactors. Single chamber MECs were operated with an applied voltage of 0.7 V and the impact of electrode acclimatization with a simple substrate, acetate (ACE) vs a complex waste, CM, was compared. Upon biofilm formation on the sole carbon source (ACE or CM), several MECs (ACE_CM and CM_ACE) were subjected to cross-feeding (switching substrate to CM or ACE) during the test period to evaluate the impact of the primary substrate. Even though there was twice as much peak current density via feeding ACE during biofilm formation, this did not translate into higher CH4 production during the test period, when reactors were fed with CM. Higher or similar CH4 production was recorded in CM_CM reactors compared to ACE_CM at various soluble chemical oxygen demand (sCOD) concentrations. Additionally, feeding ACE as primary substrate did not significantly impact either COD removals or coulombic efficiencies. On the other hand, the use of anaerobic digester (AD) seed as an inoculum in CM-fed MECs (CM_CM), relative to no inoculum added MECs (Blank), increased the initial CH4 production rate by 45% and reduced the start-up time by 20%. In CM-fed MECs, Geobacter dominated bacterial communities of bioanodes and hydrogenotrophic methanogen Methanoculleus dominated archaeal communities of biocathodes. Community cluster analysis revealed the significance of primary substrate in shaping electrode biofilm; thus, it should be carefully selected for successful start-up of electromethanogenic reactors treating wastes.


Assuntos
Euryarchaeota , Esterco , Bovinos , Animais , Bactérias , Archaea , Metano , Reatores Biológicos/microbiologia , Anaerobiose
16.
Chemosphere ; 317: 137770, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621685

RESUMO

Most bio-electrochemical systems (BESs) use biotic/abiotic electrode combinations, with platinum-based abiotic electrodes being the most common. However, the non-renewability, cost, and poisonous nature of such electrode systems based on noble metals are major bottlenecks in BES commercialisation. Microbial electrosynthesis (MES), which is a sustainable energy platform that simultaneously treats wastewater and produces chemical commodities, also faces the same problem. In this study, a dual bio-catalysed MES system with a biotic anode and cathode (MES-D) was tested and compared with a biotic cathode/abiotic anode system (MES-S). Different bio-electrochemical tests revealed improved BES performance in MES-D, with a 3.9-fold improvement in current density compared to that of MES-S. Volatile fatty acid (VFA) generation also increased 3.2-, 4.1-, and 1.8-fold in MES-D compared with that in MES-S for acetate, propionate, and butyrate, respectively. The improved performance of MES-D could be attributed to the microbial metabolism at the bioanode, which generated additional electrons, as well as accumulative VFA production by both the bioanode and biocathode chambers. Microbial community analysis revealed the enrichment of electroactive bacteria such as Proteobacteria (60%), Bacteroidetes (67%), and Firmicutes + Proteobacteria + Bacteroidetes (75%) on the MES-S cathode and MES-D cathode and anode, respectively. These results signify the potential of combined bioanode/biocathode BESs such as MES for application in improving energy and chemical commodity production.


Assuntos
Acetatos , Ácidos Graxos Voláteis , Águas Residuárias , Eletrodos , Dióxido de Carbono/metabolismo
17.
ACS Appl Mater Interfaces ; 14(19): 22216-22224, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35511069

RESUMO

The light-dependent reactions of photosynthesis use light energy to generate photoelectrons traveling through the thylakoid membranes (TMs). Extracting the photoelectrons from the TMs to form bioanodes can have various applications. Most studies focus on modifying the electrode materials to increase the collected photocurrent. Seldom studies have investigated how the orientation of the TMs influences photocurrent collection. In addition, the formation of reactive oxygen species (ROS) during photosynthesis is a challenge for stable photocurrent generation. Here, we enhanced the photoelectron transfer from the TMs to electrodes by depositing expanded thylakoids as planar supported membranes onto an electrode. The high contact area between the external electrodes and TMs per unit mass of thylakoid allows the thylakoid to more effectively transfer electrons to the electrodes, thereby reducing the free electrons available for the ROS generation. We expanded the naturally stacked thylakoids into liposomes through osmotic pressure and dropcasted them onto an Au electrode. The electrochemical impedance measurement showed that the supported membrane bioanode formed by the expanded liposomes had a lower photoelectron transfer resistance. Additionally, we observed that the expanded TM bioanode provided a higher photocurrent and was more durable to air/water interfacial tension. These results suggest that the effective contact between the expanded TM and electrodes can lead to more efficient electron transfer and increase the system robustness. The photo fuel cell (PFC) made by the expanded TM bioanode had a higher open-circuit voltage than the one made by the stacked TM bioanode. Interestingly, we found that PFCs made of high-load TM bioanodes had fast photocurrent decay under continuous operation at high cell voltages. The poor contact of large numbers of TMs with the electrodes at the high-load TM bioanodes could cause more ROS accumulation and therefore decreased the operational stability, supporting the importance of effective contact between TMs and the electrodes.


Assuntos
Elétrons , Tilacoides , Eletrodos , Transporte de Elétrons , Lipossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Biofilm ; 4: 100064, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34984335

RESUMO

Electro-active bacteria (EAB) can form biofilms on an anode (so-called bioanodes), and use the electrode as electron acceptor for oxidation of organics in wastewater. So far, bioanodes have mainly been investigated under a continuous anode potential, but intermittent anode potential has resulted in higher currents and different biofilm morphologies. However, little is known about how intermittent potential influences the electron balance in the anode compartment. In this study, we investigated electron balances of bioanodes at intermittent anode potential regimes. We used a transparent non-capacitive electrode that also allowed for in-situ quantification of the EAB using optical coherence tomography (OCT). We observed comparable current densities between continuous and intermittent bioanodes, and stored charge was similar for all the applied intermittent times (5 mC). Electron balances were further investigated by quantifying Extracellular Polymeric Substances (EPS), by analyzing the elemental composition of biomass, and by quantifying biofilm and planktonic cells. For all tested conditions, a charge balance of the anode compartment showed that more electrons were diverted to planktonic cells than biofilm. Besides, 27-43% of the total charge was detected as soluble EPS in intermittent bioanodes, whereas only 15% was found as soluble EPS in continuous bioanodes. The amount of proteins in the EPS of biofilms was higher for intermittent operated bioanodes (0.21 mg COD proteins mg COD biofilm-1) than for continuous operated bioanodes (0.05 mg COD proteins mg COD biofilm-1). OCT revealed patchy morphologies for biofilms under intermittent anode potential. Overall, this study helped understanding that the use of a non-capacitive electrode and intermittent anode potential deviated electrons to other processes other than electric current at the electrode by identifying electron sinks in the anolyte and quantifying the accumulation of electrons in the form of EPS.

19.
Sci Total Environ ; 833: 155190, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421490

RESUMO

This study aimed to reveal the synergistic effect of bioanode and biocathode on nitrobenzene (NB) removal with different microbial community structures and functions. Single-chamber bioelectrochemical reactors were constructed and operated with different initial concentrations of NB and glucose as the substrate. With the synergistic effect of biocathode and bioanode, NB was completely removed within 8 h at a kinetic rate constant of 0.8256 h-1, and high conversion rate from NB to AN (92%) was achieved within 18 h. The kinetic rate constant of NB removal was linearly correlated with the maximum current density and total coulombs (R2 > 0.95). Increase of glucose and NB concentrations had significantly positive and negative effects, respectively, on the NB removal kinetics (R2 > 0.97 and R2 > 0.93, respectively). Geobacter sp. and Enterococcus sp. dominated in the bioanode and biocathode, respectively. The presence of Klebsiella pneumoniae in the bioanode was beneficial for Geobacter species to produce electricity and to alleviate the NB inhibition. As one of the dominant species at the biocathode, Methanobacterium formicicum has the ability of nitroaromatics degradation according to KEGG analysis, which played a crucial role for NB reduction. Fermentative bacteria converted glucose into volatile fatty acids or H2, to provide energy sources to other species (e.g., Geobacter sulfurreducens and Methanobacterium formicicum). The information from this study is useful to optimize the bioelectrocatalytic system for nitroaromatic compound removal.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Eletricidade , Eletrodos , Glucose , Nitrobenzenos/metabolismo
20.
Environ Sci Pollut Res Int ; 29(59): 89727-89737, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35857167

RESUMO

Microbial electrolysis cells (MECs) are considered as green technologies for H2 production with simultaneously wastewater treatment. Low H2 recovery and production rate are two key bottlenecks of MECs fed with real H2 fermentation effluent of biomass wastes. This work established a 1 L cylindrical single chamber MEC and enriched electroactive anodic biofilms from cow dung compost to overcome the bottlenecks. These MEC components (platinum-coated cylindrical titanium mesh cathode and cylindrical graphite felt anode) were arranged in a concentric configuration. A high H2 production rate of 6.26 ± 0.23 L L-1 day-1 with H2 yield of 5.75 ± 0.16 L H2 L-1 fermentation effluent was achieved at 0.8 V. The degradation of acetate and butyrate (main components of H2 fermentation effluent) could reach to 95.3 ± 2.1% and 78.4 ± 3.6%, respectively. The microbial community analysis for anode showed the abundance of Geobacter (22.6%), Syntrophomonas (8.7%), and Dysgonomonas (6.3%) which are responsible to complex substrate oxidation, electrical current generation, and H2 production. These results prove the feasibility of cylindrical single-chamber MEC for high H2 production rate and high acetate and butyrate removal from H2 fermentation effluent.


Assuntos
Fontes de Energia Bioelétrica , Hidrogênio , Fermentação , Biomassa , Hidrogênio/metabolismo , Eletrólise/métodos , Eletrodos , Acetatos/metabolismo , Butiratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa