Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 191: 110243, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001421

RESUMO

The use of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) has been suggested to diminish agricultural soil nitrate (NO3-) loss and increase nitrogen (N) use efficiency (NUE). However, the yield of ammonium (NH4+)-sensitive plants such as spinach (Spinacia oleracea L.) may be adversely affected by the application of NIs at high N levels and, on the other hand, the efficiency of the NIs may also be affected by soil amendments such as biochar. These two issues are still not adequately addressed. The aim of this study was to evaluate the effect of different N levels including DMPP or not in a calcareous soil with and without amendment of wheat straw biochar on spinach yield, NUE, nitrate concentration of spinach leaf, activity of enzymes nitrate reductase (NR) and nitrite reductase (NiR), and soil ammonium (NH4+) and NO3- concentration under greenhouse conditions. This experiment was carried out with different N rates factor at seven levels (un-fertilized, N0; fertilized with 50 mg N kg-1 soil, N50; fertilized with 75 mg N kg-1 soil, N75; fertilized with 100 mg N kg-1 soil, N100; fertilized with N50 + DMPP; fertilized with N75 + DMPP; and fertilized with N100 + DMPP) and biochar (BC) factor at two levels (0, 0%BC; and 2% (w/w), 2%BC) with six replications over a 56-day cultivation period of spinach. Results showed that the application of DMPP had no significant effect on the yield of spinach plant at low and medium levels of N (50 and 75 mg N kg-1 soil), but decreased the yield of this plant at the higher level of N (100 mg N kg-1 soil). However, application of BC decreased the negative effect of DMPP on spinach yield as the yield in spinach plants fertilized with N75 + DMPP and N100 + DMPP significantly increased. Both application of DMPP and addition of BC to soil decreased leaf NO3- concentration by 29.2% and 16.3% compared to control, respectively. Biochar compared to control decreased NR activity by 46.3%. With increasing N rate, NR and NiR activities increased, but DMPP decreased the activities of both enzymes. Biochar reduced the efficiency of DMPP as soil NH4+ concentration was higher in the treatments containing DMPP without BC at 56 days after planting. Biochar and DMPP could increase the quality of spinach plant through decreasing the leaf NO3- concentration. In general, wheat straw biochar counteracted DMPP-mediated negative effect on growth of spinach plant at high level of N by decreasing the efficiency of this inhibitor. These results provide the useful information for managing the application rate of N fertilizers including DMPP in biochar-amended soil.


Assuntos
Carvão Vegetal/farmacologia , Fertilizantes/análise , Nitrificação , Pirazóis/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Biomassa , Carvão Vegetal/química , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Solo/química , Spinacia oleracea/enzimologia
2.
J Hazard Mater ; 465: 133159, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061130

RESUMO

During biochar preparation or application some toxic substances may be formed. The established limitations of the content of polycyclic aromatic hydrocarbons (PAHs) aim to monitor the fate of PAHs in the life cycle of biochar. The latest studies have revealed that besides PAHs, some of their derivatives with confirmed toxicity are formed. There has been no policy regards PAH derivatives in biochar yet. The aim of the presented studies was the estimation the changes in the content of PAHs and their derivatives during the agricultural application of biochar. A pot experiment with grass revealed that in a short time, both the content of PAHs and their derivatives was reduced. Similarly, when biochar was added to soil in a long-term experiment, the content of determined derivatives was below the limit of detection, whereas interestingly, the content of pristine PAHs increased with time. Co-addition of biochar and sewage sludge increased the content of PAHs and their derivatives indicating potential environmental hazard due to their presence. However, the key point is the estimation of the bioavailability of PAHs and their derivatives as only the bioavailable fraction is revealing the environmental hazard.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carvão Vegetal , Esgotos
3.
Chemosphere ; 362: 142596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876326

RESUMO

Biochar has shown promising potential for soil remediation, yet its impact on heavy metals (HMs) immobilization often overlooks soil structure, which could influence soil cracking behavior and HMs transport. To address this gap, this study investigates the role of soil structure (dry density and aggregate size) on the cracking and cadmium (Cd) leaching behavior of biochar-amended fine-grained soils. A series of semi-dynamic leaching tests were conducted on samples with and without wetting-drying (W-D) cycles. Based on the proposed improved method for quantifying the effective diffusion coefficient (De) of Cd in unsaturated soils and microstructural analyses, we found that: (1) Higher dry density and larger aggregate generally resulted in smaller De by decreasing soil pore volume. (2) Biochar could connect isolated pores within large aggregates through its internal pores, yielding greater increases in De (294.8%-469.0%) compared to small aggregates (29.1%-77.4%) with 3% biochar. However, further increases in biochar dosage led to decreased De, primarily due to the dense pore structure. (3) Biochar effectively inhibited soil cracking, achieving the highest reduction of 36.8% in surface crack ratio. (4) After W-D cycles, samples exhibited higher De with increasing dry density, with aggravated cracking being the primary cause, suggesting preferential flow within the cracks, particularly those penetrating the soil. This study highlights the importance of careful consideration of soil structure and cracking potential before in situ field application of biochar as a remediation agent for HMs-contaminated fine-grained soils.


Assuntos
Cádmio , Carvão Vegetal , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/química , Cádmio/análise , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Metais Pesados/análise
4.
MethodsX ; 8: 101205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434728

RESUMO

Laboratory soil column experiments have been frequently performed for investigating various soil-related processes. In recent years, the demand for using biochar as a soil amendment for environmental and agricultural purposes has increased significantly. To assess the beneficial impacts of biochar, laboratory column experiments may be conducted using repacked biochar-amended soil before large-scale biochar application. Biochar is a porous material that might have transient hydrophobicity, and particle density, size, and shape that often differ from native soil. These factors might cause several experimental problems in repacked laboratory columns, including unrealistic hydraulic and solute transport and transformation measurements, spatial variation of biochar content, and error in estimating the repacked biochar-amended soil properties. Therefore, it is necessary to modify standard repacked column packing procedures for biochar-amended soil. In this work, several modifications are described for preparing repacked biochar-amended soils. The modifications are rinsing and oven-drying biochar, determining the optimum moisture content to achieve a homogenous mixture, determining the desired bulk density before column packing, and mixing and packing under wet conditions. In addition, repacked columns should be characterized by their inter, intra, and total porosities and pore volume after column packing.•Steps are recommended prior to packing the repacked biochar-amended soil columns: rinsing biochar and pre-determining optimum moisture content and bulk density.•Columns are wet-packed in subsections at the optimum moisture content to the desired bulk density. Following packing, the inter, intra, and total porosities and pore volume should be determined.•These steps will reduce unrealistic transient results, inhibit nonuniform packing and heterogeneity of biochar content, and provide important information for interpreting the performance of biochar-amended media.

5.
Environ Pollut ; 286: 117364, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052651

RESUMO

This study explored biochar (BC) amendment effects on microcystin-LR (MCLR) concentration-dependent sorption and sequential desorption (SDE) by diverse soils to assess MCLR-trapping by BC-amended soils. Soil properties varied with rising BC dose and aging time. As aging proceeded, BC-amended soils shared a generally similar 'firstly increase and then decrease' trend of MCLR sorption and 'firstly decrease and then increase' trend of desorption at most cases. It appeared that MCLR sorption by BC-amended soils was most positively correlated with mesoporosity and surface basic functionality. BC-amendment increased MCLR-trapping for most soils, especially 4% BC at 3 month-aging maximized trapping ratio of GZ, SY and SX to 86.59%-95.43%, 80.01%-87.20% and 78.73%-90.85%, respectively, at 50-500 µg/L MCLR by largely increasing sorption and decreasing desorption. BC-amendment best matched GZ soil because MCLR-trapping of BC-amended GZ exceeded other amended soils at the same BC dose and aging time, but failed to obviously increase MCLR-trapping of HS soil at most cases, except only case with 2% BC at 3 month-aging. Site energy distribution verified that maximally enhanced MCLR-trapping of most soils was due to greatly enhanced sorption affinity during sorption and 1st desorption cycle, making closer MCLR-binding that more resistant to desorption. Contrarily, BC-amendment did not enhance sorption affinity of HS along sorption-SDE to compromise MCLR-trapping increase at most cases. This study validated 3 months as suitable BC-aging time to maximize MCLR-trapping in diverse soils, and elucidated influencing factors and mechanisms from view of site energy distribution, which shed novel insights on MCLR sorption-desorption by BC-amended soils, and guided to optimize BC-amendment strategy for efficient MCLR-immobilization and eco-risk elimination in diverse soils.


Assuntos
Poluentes do Solo , Solo , Adsorção , Carvão Vegetal , Fazendas , Toxinas Marinhas , Microcistinas
6.
Environ Sci Pollut Res Int ; 27(17): 21497-21505, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277418

RESUMO

Biochar has been found to be a potentially suitable amendment for landfill cover material and agricultural soil. The addition of biochar can improve the physical (e.g., adsorption capacity) and hydrological properties (e.g., water/gas permeability) of soil. However, no experimental study is available about the effect of biochar content (BC) on the gas diffusion coefficient (DP) of soil. The present study investigated the effect of BC on DP under different degree of compaction (DOC; 85%, 90%, and 95%) and soil air contents (SAC; 5%, 10%, and 15%). It was found that DOC and BC had negligible effects on DP when SAC was low (~ 5%). In contrast, when the SAC was relatively high (~ 15%), soil with DOC of 85% had the largest DP for BC ranging from 0 to 15% (w/w). Only when the SAC was large (~ 15%), the addition of biochar generally increased DP.


Assuntos
Carvão Vegetal , Solo , Adsorção , Instalações de Eliminação de Resíduos
7.
Sci Total Environ ; 672: 698-707, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974360

RESUMO

Biochar amended soil (BAS) has been explored as a cover material for geo-environmental applications such as landfill cover due to its vegetation potential. Soil erosion in these infrastructures can progressively lead to failure and hamper the workability of the system. BAS is compacted for geo-environmental applications, unlike agricultural soil, which are loose in nature. Furthermore, the love-hate relationship of biochar with water can potentially affect the functioning of compacted cover system. Thus, the performance of compacted BAS in the context of erosion potential is not well understood. The major objective of this technical note was to explore the erosion potential of compacted BAS sourced from four distinct biochars. Biochar were produced in-house and mixed with soil at 5% and 10% by weight. In total, 81 pinhole erosion tests were performed to gauge the erosion rate of bare soil and BAS at three different compaction states at same compaction energy. It was revealed that the erosion rate decreased with gradual increment in water content for BAS, which was mainly attributed to the change of particle orientation from flocculated to dispersed along the compaction curve. Addition of biochar to soil resulted in decrease of erosion along the dry state whereas the opposite was observed for wet state. This was attributed to the surface functional groups as well as particle gradation of biochar. Erodibility coefficient and critical shear stress plot of soil and BAS revealed that addition of biochar had minimal effect on erosion of compacted silty sand.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Fenômenos Geológicos , Poluentes do Solo/química , Adsorção , Solo/química , Instalações de Eliminação de Resíduos
8.
Water Res ; 122: 692-700, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28676175

RESUMO

Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible.


Assuntos
Agricultura , Carvão Vegetal , Poluentes do Solo , Solo
9.
Chemosphere ; 163: 480-489, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27565316

RESUMO

The objective of this study was to estimate the effectiveness of application of sewage sludge-derived biochars for the immobilisation of freely dissolved (Cfree) and bioaccessible (Cbioacc) polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Soil SL-COK collected from the area of a coking plant and soil SL-BIT collected from the area of a plant producing bituminous materials were chosen for the study. The biochars were produced from sewage sludge at temperatures of 500 °C (BC500) or 700 °C (BC700). The biochars were mixed with the soil at the dose of 5% and incubated for a period of 60 d. The content of PAHs was determined with the use of polyoxymethylene (POM) (Cfree) or a solution of cyclodextrins and silicon rod elastomer (Cbioacc). Biochars reduced the content of Cfree and Cbioacc PAHs in soils. A higher level of reduction was noted for Cfree PAHs than for Cbioacc PAHs. Biochar produced at 700 °C was more effective in the reduction of Cfree and Cbioacc PAHs than biochar produced at 500 °C. It was found that in the soil in which the source of contamination were processes related with the production of bituminous materials (SL-BIT), the effect of reduction of Cfree and Cbioacc was greater than in soil SL-COK where the source of PAHs were coking processes. It also needs to be emphasised that soil SL-BIT, for which better reduction of PAHs was noted, was also characterised by a lower affinity towards those compounds than soil SL-COK.


Assuntos
Carvão Vegetal/química , Hidrocarbonetos Policíclicos Aromáticos/química , Esgotos , Disponibilidade Biológica , Carbono/química , Ciclodextrinas/química , Poluentes Ambientais/química , Cromatografia Gasosa-Espectrometria de Massas , Resinas Sintéticas/química , Silício/química , Solo/química , Poluentes do Solo/análise , Temperatura
10.
Environ Sci Pollut Res Int ; 23(12): 12323-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26976015

RESUMO

Biochar is widely used in agricultural soils or heavy metal-polluted soils to improve the quality of the soils, which would affect the growth of the plant. However, the information of biochars' effect on the plant growth was still lacking, especially for the physiological response of the plant. Pot experiments were used to examine the effect of willow-derived biochars at two temperatures (450 and 600 °C) on cadmium (Cd) accumulation in pepper and to reveal the response of physiological parameters to exogenous Cd stress (1 and 5 mg/kg). The results showed that the accumulation of Cd in pepper roots was higher than that in pepper shoots. For low level of Cd treatments, high additional rates of the biochars could obviously reduce the accumulation of Cd in the pepper roots. Moreover, there was a negative correlation between the C content of the biochar-amended soils and the Cd content of the pepper root, suggesting that the application of biochar to the soil decreased the Cd accumulation in the root. A positive relationship between the H/C ratios of biochar-amended soils and their corresponding Cd concentrations in pepper root indicated that low thermal temperature-derived biochar could play an important role in immobilizing Cd in the soil. Furthermore, on the condition of low Cd level of treatments, the malondialdehyde content decreased in biochar-amended soils, especially at high biochar application rate. The chlorophyll content increased with increasing the rates of the biochar application. The physiological parameters indirectly proved that the application of biochar did not always alleviate the toxic effects of Cd on pepper leaves at high Cd concentration.


Assuntos
Cádmio/análise , Capsicum/química , Capsicum/efeitos dos fármacos , Carvão Vegetal/farmacologia , Cádmio/farmacologia , Capsicum/crescimento & desenvolvimento , Desenvolvimento Vegetal , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Solo , Poluentes do Solo/análise , Temperatura
11.
Chemosphere ; 111: 320-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997935

RESUMO

To investigate the role of the bulk and surface composition of both biochar and biochar-amended soils in the adsorption of Cd(2+), as well as the influence of different biochars added to the soils on Cd(2+) adsorption, swine-manure-derived biochars (BSs) and wheat-straw-derived biochars (BWs) were produced at 300, 450, and 600°C. These biochars were added to a sandy soil to investigate the effect of biochars on the adsorption of Cd(2+) by soil. The significantly higher surface C content of the amended soils compared to their bulk C content suggests that the minerals of the biochar-amended soils are most likely covered primarily by biochars. The maximum adsorption capacity (Qmax,total) of the BSs was 10-15 times higher than that of the BWs due to the high polarity and ash content of the BSs. The polarity ((N+O)/C) of the low-temperature biochars greatly affected their Cd(2+) adsorption. The Qmax,total of the BS-amended soils increased with increasing dose, whereas the Qmax,total of the BW-amended soils showed the opposite behavior, which was attributed to the different surface composition characteristics of the two types of soil. The BSs were more effective in immobilizing Cd(2+) upon application to the soil relative to the BWs. This study elucidates the spatial distribution of biochars in biochar-amended soils and highlights the importance of the surface composition of the investigated samples in Cd(2+) adsorption.


Assuntos
Cádmio/química , Carvão Vegetal/química , Solo/química , Adsorção , Animais , Íons/química , Esterco , Propriedades de Superfície , Suínos , Temperatura , Triticum/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa