Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Environ Res ; 247: 118287, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266902

RESUMO

Hydrothermal carbonization may be a sustainable sanitary treatment for wet organic waste including human excreta. Human-excreta-derived hydrochar properties differ from those of typical wet biomass due to the formation of a biocrude-like phase at low reaction temperatures. This study characterized the importance of this phase in terms of hydrochar combustion properties and potential agricultural use. Hydrothermal carbonization of raw human excreta was undertaken at 180, 210, and 240 °C, after which the biocrude phase was extracted with dichloromethane. Physicochemical properties, surface-area parameters, combustion profiles, and gas emissions of non-extracted hydrochar, biocrude, and extracted hydrochar were compared. The potential agricultural use of extracted hydrochar was assessed in germination experiments. Biocrude comprised up to 49.5% of hydrochar mass with a calorific value of >60% that of extracted hydrochar. Biocrude combustion properties were better than those of hydrochar, before and after extraction as demonstrated by higher combustion index value (Si). The extracted hydrochar surface area (34.7 m2 g-1) was greater than that of non-extracted hydrochar (<2 m2 g-1), and seeds germinated more readily due to the lower phytotoxin content. Most macro and micronutrients required for plant growth were retained in the extracted hydrochar. The extraction of biocrude from human-excreta-derived hydrochar not only provided a higher-quality fuel with enhanced combustion properties but also improved hydrochar characteristics, suggesting its potential as a soil additive for enhanced plant growth.


Assuntos
Biocombustíveis , Carbono , Humanos , Carbono/química , Temperatura , Temperatura Baixa , Sementes
2.
J Environ Manage ; 354: 120435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402790

RESUMO

An integrated life cycle assessment (LCA) and quantitative microbial risk assessment (QMRA) were conducted to assess microalgae-mediated wastewater disinfection (M-WWD). M-WWD was achieved by replacing ultraviolet disinfection with a microalgal open raceway pond in an existing sewage treatment plant (STP) in India. Regarding impacts on human health, both M-WWD and STP yielded comparable life cycle impacts, around 0.01 disability-adjusted life years (DALYs) per person per year. However, QMRA impacts for M-WWD (0.053 DALYs per person per year) were slightly lower than that for STP while considering exposure to E. coli O157:H7 and adenovirus. Additionally, a comparative LCA resolved the dilemma about the appropriate utilization of microalgal biomass. Among biodiesel, biocrude, and biogas production, the lowest impacts of 0.015 DALYs per person per year were obtained for biocrude for 1 m3 water treated by M-WWD. Electricity consumption in microalgae cultivation was a major environmental hotspot. Overall, M-WWD, followed by production of microalgal biocrude, emerged as a sustainable alternative from environmental and public health perspectives. These findings set the foundation for pilot-scale M-WWD system development, testing, and economic evaluation. Such comprehensive investigations, encompassing LCA, QMRA, and resource recovery scenarios, offer crucial insights for stakeholders and decision-makers in wastewater treatment and environmental management.


Assuntos
Microalgas , Águas Residuárias , Humanos , Escherichia coli , Esgotos , Lagoas , Biocombustíveis , Biomassa
3.
J Environ Manage ; 356: 120626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518491

RESUMO

Biomass can be used as an energy source to thermochemical conversion processes to biocrude production. However, the supply and dependence on only one biomass for biocrude production can be an obstacle due to its seasonality, availability, and logistics costs. In this way, biomass waste and agroindustrial residues can be mixture and used as feedstock to the hydrothermal co-liquefaction (co-HTL) process as an alternative to obtaining biocrude. In this sense, the present paper analyzed the biocrude yield influence of the co-HTL from a quaternary unprecedented blend of different biomasses, such as sugarcane bagasse, brewer's spent grain (BSG), sludge from a paper recycling mill (PRM), and microalgae (Chlorella vulgaris). In this way, a simplex lattice design was employed and co-HTL experiments were carried out in a 2000 mL high-pressure stirred autoclave reactor under 275 °C for 60 min, considering 15% of feedstock/water ratio. Significant effects in each feedstock and their blends were analyzed aiming to increase biocrude and biochar yield. It was found that the addition of microalgae is only significant when considered more than 50% into the blend with BSG and PRM sludge to increase biocrude yield.


Assuntos
Carvão Vegetal , Chlorella vulgaris , Microalgas , Saccharum , Esgotos , Celulose , Temperatura , Microalgas/química , Biomassa , Água/química , Biocombustíveis/análise
4.
BMC Plant Biol ; 23(1): 644, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097976

RESUMO

Biopesticides offer a sustainable and efficient alternative to synthetic pesticides, providing a safer and more eco-friendly solution to pest management. The present work proposes an innovative approach that integrates crop protection and wastewater treatment using thermophilic microalgal strain Chlorella thermophila (CT) cultivated in nutrient-rich dairy wastewater as a growth medium. The microalgae was cultivated mixotrophically and was able to reduce both organic carbon as well as nutrient load of the dairy wastewater efficiently. The integrated circular biorefinery approach combines biomass cultivation, extraction of biopesticide compounds, and conversion to biocrude. The antimicrobial activity of the biopesticidal extracts against Xanthomonas oryzae and Pantoea agglomerans, the causative agent of bacterial rice blight, is assessed through in vitro studies. The biomass extract obtained is able to inhibit the growth of both the above-mentioned plant pathogens successfully. Mass spectroscopy analysis indicates the presence of Neophytadiene that has previously been reported for the inhibition of several pathogenic bacteria and fungi. Several other value-added products such as linoleic acid and nervonic acids were also been detected in the microalgal biomass which have extremely high nutraceutical and medicinal values. Furthermore, the study investigates the potential for co-production of biocrude from the biorefinery process via hydrothermal liquefaction. Overall, the findings of this present work represent an innovative and sustainable approach that combines wastewater treatment and crop protection using microalgal biomass.


Assuntos
Chlorella , Microalgas , Oryza , Águas Residuárias , Agentes de Controle Biológico , Biomassa , Bactérias , Biocombustíveis
5.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608330

RESUMO

In 2019, U.S. petroleum refineries emitted 196 million metric tons (MT) of CO2, while the well-to-gate and the full life cycle CO2 emissions were significantly higher, reaching 419 and 2843 million MT of CO2, respectively. This analysis examines decarbonization opportunities for U.S. refineries and the cost to achieve both refinery-level and complete life-cycle CO2 emission reductions. We used 2019 life-cycle CO2 emissions from U.S. refineries as a baseline and identified three categories of decarbonization opportunity: (1) switching refinery energy inputs from fossil to renewable sources (e.g., switch hydrogen source); (2) carbon capture and storage of CO2 from various refining units; and (3) changing the feedstock from petroleum crude to biocrude using various blending levels. While all three options can reduce CO2 emissions from refineries, only the third can reduce emissions throughout the life cycle of refinery products, including the combustion of fuels (e.g., gasoline and diesel) during end use applications. A decarbonization approach that combines strategies 1, 2, and 3 can achieve negative life-cycle CO2 emissions, with an average CO2 avoidance cost of $113-$477/MT CO2, or $54-$227/bbl of processed crude; these costs are driven primarily by the high cost of biocrude feedstock.

6.
J Environ Manage ; 297: 113257, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303940

RESUMO

Algae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production. However, the optimum nutrient concentration and ratio may vary depending upon the microalgal species as well as cultivation conditions. The use of indigenous algae and algae-based consortia with other microorganisms has been proved promising in improving nutrient recovery efficiency and biomass production in pilot scale operations. However, environmental and cultivation conditions also play a significant role in determining the feasibility of the process. This review further focused on the assessment of the potential benefits of algal biomass production, renewable biofuel generation, and CO2 sequestration using wastewater in different countries on the basis of available data on wastewater generation and estimated nutrient contents. It was estimated that 5-10% replacement of fossil crude requirement with algal biofuels would require ~952-1903 billion m3 of water, 10-21 billion tons of nitrogen, and 2-4 billion tons of phosphorus fertilizers. In this context, coupling wastewater treatment and algal biomass production seem to be the most sustainable option with potential global benefits of polishing wastewater through nutrients recycling and carbon dioxide sequestration.


Assuntos
Microalgas , Águas Residuárias , Biocombustíveis , Biomassa , Fósforo
7.
J Environ Manage ; 237: 24-29, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30780052

RESUMO

Conversion technology of solid biomass to liquid fuel, named bio-crude oil, has been researched widely for the production of renewable energy to replace fossil fuel oil. As the result of many admirable researches, fast pyrolysis technology for bio-crude oil production is close to commercialization. However, bio-crude oil has unsatisfactory properties compared to general petroleum oil, for instance, low heating value, high water content, and high viscosity. In this study, pine sawdust (SD) biomass was co-pyrolyzed with waste polystyrene foam (WPSF), which was expected to improve the bio-crude oil quality due to high heating value and non-oxygen composition of polystyrene. The co-pyrolysis experiment was conducted in a bubbling fluidized bed reactor under the following conditions: temperature of 500 °C which was chosen based on the results from thermogravimetric analysis of SD and WPSF, nitrogen flow rate of 20-25 L/min., and feeding rate of 200 g/hr. Various mixing ratios of SD/WPSF by weight percentage were tested as follows: 100/0, 95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 60/40, 50/50, 25/75, 0/100. Experimental results showed that in case of only SD feeding the bio-crude oil yield and higher heating value (HHV) were 48.83 wt% and 17.81 MJ/kg respectively. By contrast, oil yield and HHV in case of 25% SD with 75% WPSF mixture were 63.31 wt% and 39.65 MJ/kg respectively. Additional analysis showed that water content, and acetic acid concentration of bio-crude oil from co-pyrolysis of SD/WPSF mixture were decreased almost proportionally with the increasing WPSF ratio. Furthermore, measured values of water content, and acetic acid concentration were lower than the calculated values by linear interpolation, which means that the synergistic effect between SD and WPSF was achieved during the co-pyrolysis. In conclusion, co-pyrolysis of SD and WPSF was found as a promising solution to improve bio-crude oil quality. With this technology, the industrial growth of bio-crude oil area is expected as well as waste plastic.


Assuntos
Petróleo , Biocombustíveis , Temperatura Alta , Poliestirenos , Pirólise , Madeira
8.
Energy Convers Manag ; 157: 239-245, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29449755

RESUMO

In this study, human feces were hydrothermal liquefied and converted into biocrude over Ni-Tm/TiO2 catalyst. The influence of catalysts, reaction temperature, and holding time on the distribution of products and element content of biocrude was assessed. The biocrude yield increased to 53.16% with a reaction temperature of 330 °C, a holding time of 30 min, and adding Ni-Tm/TiO2 catalyst while the liquefaction conversion peaked at 89.61%. The biocrude had an HHV of 36.64 MJ/kg and was similar to heavy crude oil. The biocrude is rich in fatty acid amides, esters, and oxygen-containing-only heteroatom-ring compounds as well as some nitrogen-containing heteroatom-ring compounds. The main gaseous products were CO2, CH4, and C2H6. Hydrothermal liquefaction over Ni-Tm/TiO2 catalyst could be a potential method to handle human excrement treatment and produce biofuel.

9.
Appl Energy ; 177: 852-862, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818570

RESUMO

Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

10.
Sci Total Environ ; 912: 169168, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072251

RESUMO

This research reports data for the integrated obtaining of fermentable sugars (FSs), bio-oil (BO), and hydro-char (HC) - all fuel precursors - as well as platform chemicals (PCs - acetic, formic, and levulinic acid, besides furfural, and hydroxymethylfurfural) through semi-continuous hydrothermal processing of sawdust from pine wood. The influence of temperature (260, 300, and 340 °C) and the water-to-biomass ratio (25 and 50 g H2O (g biomass)-1) were the parameters considered to evaluate the mass yields, kinetic profiles, and BO properties. For FSs (and PCs), a detailed analysis considering the kinetic profiles of obtaining cellobiose, glucose, xylose, and arabinose is presented. For the conditions evaluated, a distinct behavior concerning the process parameters was observed, where 7.11 and 9.28 g (100 g biomass)-1 of FSs and PCs were synergistically obtained, respectively, after 30 min, 20 MPa, 260 °C, and 50 g H2O (g biomass)-1. Contextually, 17.59 g (100 g biomass)-1 of BO was obtained at 340 °C and the same water/biomass ratio. FTIR analysis of the BO samples suggested the presence of aldehydes, carboxylic acids, ketones, hydrocarbons, ethers as well as aromatic, alcohols, and nitrogenous compounds. Similar HC yields were achieved among the conditions analyzed, where 24.68 g (100 g biomass)-1 were obtained at 340 °C and 50 g H2O (g biomass)-1 for a higher heating value of 29.14 MJ kg-1 (1.5 times higher than the in natura biomass).

11.
Bioresour Technol ; 409: 131240, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122129

RESUMO

To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.


Assuntos
Aspergillus niger , Técnicas de Cocultura , Zea mays , Zea mays/química , Aspergillus niger/metabolismo , Água/química , Rhodococcus/metabolismo , Ácido Oxálico , Análise da Demanda Biológica de Oxigênio , Fermentação , Biomassa , Fungos/metabolismo , Biocombustíveis
12.
Sci Total Environ ; 940: 173660, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38834100

RESUMO

The use of sustainable biomass can be a cost-effective way of reducing the greenhouse gas emissions in the maritime and aviation sectors. Biomass, however, is a limited resource, and therefore, it is important to use the biomass where it creates the highest value, not only economically, but also in terms of GHG reductions. This study comprehensively evaluates the GHG reduction potential of utilising forestry residue in different bioenergy technologies using a consequential LCA approach. Unlike previous studies that assess GHG impacts per unit of fuel produced, this research takes a feedstock-centric approach which enables comparisons across systems that yield diverse products and by-products. Three technologies-combined heat and power plant with carbon capture, hydrothermal liquefaction, and gasification-are assessed, while considering both carbon capture and storage (CCS) or carbon capture and utilisation (CCU). Through scenario analysis, the study addresses uncertainty, and assumptions in the LCA modelling. It explores the impact of energy systems, fuel substitution efficiency, renewable energy expansion, and the up/down stream supply chain. All technology pathways showed a potential for net emissions savings when including avoided emissions from substitution of products, with results varying from -111 to -1742 kgCO2eq per tonne residue. When combining the bioenergy technologies with CCU the dependency on the energy system in which they are operated was a significantly higher compared to CCS. The breakpoint was found to be 44 kg CO2eq/kWh electricity meaning that the marginal electricity mix has to be below this point for CCU to obtain lower GHG emissions. Furthermore, it is evident that the environmental performance of CCU technologies is highly sensitive to how it will affect the ongoing expansion of renewable electricity capacity.

13.
Heliyon ; 10(17): e37520, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39309271

RESUMO

This study investigated the effects of different alkali catalysts (K2CO3, KOH, NaOH, and Na2CO3) on the yield and composition of biocrude oil and aqueous products obtained from hydrothermal liquefaction (HTL) of corn stover. HTL was performed in a laboratory-scale tubular reactor at 320 °C for 90 min and catalyst loading of 5.0 and 7.5 % (by weight of biomass). The composition of the biocrude oil and aqueous products was determined using GC-MS. Results revealed that hydroxide catalysts are more effective than carbonate catalysts in increasing biocrude oil yield. Notably, NaOH achieved a high conversion rate of 92-94 % daf (dry and ash-free basis), significantly surpassing the uncatalyzed HTL (69.4 % daf). The highest biocrude oil yield of 22.12-22.57 % daf was obtained using KOH. Si-containing compounds (e.g., silanes and siloxanes) were identified as the most abundant components in the biocrude oil, suggesting potential for further exploration in producing platform chemicals from these compounds.

14.
Heliyon ; 10(17): e36758, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281648

RESUMO

In this study, biocrude was successfully produced by the hydrothermal liquefaction of municipal solid waste collected from the landfill site of Lahore, the capital of Punjab, Pakistan, boasting a population of 12 million and an annual waste collection of 10 million tons. The hydrothermal liquefaction process was performed at reaction parameters of 350 °C and 165 bars with 15 min of residence time. The solid waste was found to have 78 % dry matter, 22 % moisture contents, 22.2 % ash, 22.69 MJ/kg higher heating value, 52.062 % C, 8.007 % H, 0.764 % N, and 39.164 % O. Non-catalytic process only produced 10.57 % oil, however when using the catalytic process, the biocrude yield improved to 17.61 %, with 22.61 % energy recovery for biocrude and 12.14 % for solids, when using 2 g dose of K2CO3. The resultant biocrude has a 28.61 MJ/kg higher heating value, having 60.28 % C and 9.28 % H. In contrast, the aqueous phase generated had 4.43 pH, 71.5 g/L TOC, and 1.35 g/L Total Nitrogen. TGA indicated that biocrude contains approximately 80 % of volatile fractions of different fuels. The organic compounds having the six highest peak areas in GC-MS were Ethyl ether 25.74 %, 2-pentanone, 4-hydroxy-4-methyl 9.08 %, 2-propanone, 1,1-dimethoxy 5.62 %, Silane, dimethyl (docosyloxy) butoxy 5.08 %, 1-Hexanol, 2-ethyl 4.53 %, and. Phenol 4.07 %. This work makes the first-ever successful use of indigenous solid waste from a landfill dumping site in Lahore to successfully produce useful biocrude with aims of waste reduction and management, circular economy, and energy recovery.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38236434

RESUMO

Biomass-derived biocrude is gaining greater recognition from people in general as an alternative fuel source to traditional fossil fuels. Worldwide, a great deal of research is being done to develop fuels made from sustainable biomass in order to replace the current conventional energy sources. Waste sludge has been thought of as a viable raw biomass source because of its accessibility, affordability, high lignin content, and higher heating value. Additionally, considering sludge contains a high proportion of moisture and water acts as a catalyst during the hydrothermal liquefaction (HTL) process, it is the best choice for thermochemical conversion. From the ultimate component value ranges obtained from elemental analysis, it can be demonstrated that the C, H, and higher heating value (HHV) of petrocrude are approximately 8.78%, 23.5%, and 10.66% higher than those of biofuel. According to the overall analysis, co-liquefaction of waste vegetable oil and swine manure can result in 87.97% bio-oil at 340 °C. The temperature, retention period, inclusion of catalysts, and use of solvents, however, can all affect this proportion. To support this illustration, it has been assessed from the study that municipal wet sewage sludge can produce an HHV of 28.52 MJ/kg when water is used as the solvent. However, 34.14 MJ/kg, or 16.5% more than the previous one, can be produced for the same amount of biomass, when the mixture of water and methanol serves as the solvents. This review article highlights an array of waste sludge categories, their chemical properties, and their conversion through the HTL process. It also features a Van Krevlen diagram with a graphical representation of essential operating parameters. This review research illustrates one of the best strategies for producing biofuel in which waste sludge can be used as raw material through the HTL conversion process, considering the prospective mass commercial production of biocrude oil.

16.
Sci Total Environ ; 914: 169835, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190896

RESUMO

Cyanophyta has the potential to produce biocrude via hydrothermal liquefaction (HTL). However, aqueous phase products (APs), as by-products of HTL, pose a risk of eutrophication for the high levels of carbon, nitrogen, and phosphorus. Supercritical water oxidation (SCWO) can efficiently convert organics into small molecules, offering a technique for the harmless treatment of APs. Effects of holding time, pressure, and moisture content on the biocrude yields from isothermal HTL (300 °C) and fast HTL (salt bath temperature of 500 °C) were comprehensively investigated. Biocrude properties were characterized by elemental analysis, FT-IR and GC-MS. Subsequently, the APs obtained under the conditions producing the highest biocrude yield were subjected to SCWO at 550 °C with different oxidation coefficients (n) from 0 to 2. Removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) were further explored. The results show that the highest biocrude yields from isothermal HTL and fast HTL were 24.2 wt% (300 °C, 1800 s, 25 MPa, and 80 wt% moisture content) and 21.9 wt% (500 °C, 40 s, 25 MPa, and 80 wt% moisture content), respectively. The biocrude primarily consisted of N-containing heterocyclic compounds, amides, and acids. SCWO effectively degraded the COD and TP in APs, while the NH3-N required further degradation. At n = 2, the highest removal rates of COD, NH3-N and TP were 98.5 %, 22.6 % and 89.1 %, respectively.

17.
Bioresour Technol ; 396: 130446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367926

RESUMO

Hydrothermal liquefaction (HTL) emerges as an efficient technology for converting food waste into biocrude. Among HTL parameters, the impact of heating rate is understudied. This study systematically explores its variation (5-115 K/min) on HTL performance using actual food waste and model compounds representing its constituents. Results revealed that an increase in heating rates significantly impacts HTL performances (+63 % biocrude and -34 % solid with food waste) with short residence times, as slower heating rates imply a longer overall time and a higher kinetic advancement of the reaction. Conversely, with longer residence times, the influence of heating rates becomes negligible, as kinetics during heating times are overshadowed by those at operating temperatures. A subtle effect of heating variation at extended residence time was observed only with carbohydrates. This research emphasizes the utility of a kinetic severity factor (KSF) as a valuable tool for simultaneously considering heating rates, operating times, and temperatures.


Assuntos
Microalgas , Eliminação de Resíduos , Perda e Desperdício de Alimentos , Alimentos , Calefação , Temperatura , Biocombustíveis , Água , Biomassa
18.
Bioresour Technol ; 398: 130523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437962

RESUMO

This work presents dynamic optimization strategies of batch hydrothermal liquefaction of two microalgal species, Aurantiochytrium sp. KRS101 and Nannochloropsis sp. to optimize the reactor temperature profiles. Three dynamic optimization problems are solved to maximize the endpoint biocrude yield, minimize the final time, and minimize the reactor thermal energy. The biocrude maximization and time minimization problems demonstrated 11% and 6.18% increment in the optimal biocrude yields and reduction of 78.2% and 61.66% in batch times compared to the base cases for the microalgae with higher lipid and protein fractions, respectively. The energy minimization problem revealed a significant reduction in the reactor thermal energies to generate the targeted biocrude yields compared to the biocrude maximization. Therefore, the identified optimal temperature trajectories outperformed the conventional fixed temperature profiles and could improve the overall economics of the batch bio-oil production from the algal-based biorefineries by significantly enhancing the reactor performance.


Assuntos
Microalgas , Óleos de Plantas , Polifenóis , Microalgas/metabolismo , Água/metabolismo , Biomassa , Temperatura
19.
Environ Sci Pollut Res Int ; 31(5): 7902-7933, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168854

RESUMO

This study aims to determine the eco-friendliness of microalgae-based renewable energy production in several scenarios based on life cycle assessment (LCA). The LCA provides critical data for sustainable decision-making and energy requirement analysis, including net energy ratio (NER) and cumulative energy demand (CED). The Centrum voor Milieuwetenschappen Leiden (CML) IA-Baseline was used on environmental impact assessment method by SimaPro v9.3.0.3® software and energy analysis of biofuel production using native polyculture microalgae biomass in municipal wastewater treatment plants (WWTP) Bojongsoang, Bandung, Indonesia. The study was analyzed under three scenarios: (1) the current scenario; (2) the algae scenario without waste heat and carbon dioxide (CO2); and (3) the algae scenario with waste heat and carbon dioxide (CO2). Waste heat and CO2 were obtained from an industrial zone near the WWTP. The results disclosed that the microalgae scenario with waste heat and CO2 utilization is the most promising scenario with the lowest environmental impact (- 0.139 kg CO2eq/MJ), positive energy balance of 1.23 MJ/m3 wastewater (NER > 1), and lower CED value across various impact categories. It indicates that utilizing the waste heat and CO2 has a positive impact on energy efficiency. Based on the environmental impact, NER and CED values, this study suggests that the microalgae scenario with waste heat and CO2 is more feasible and sustainable to adopt and could be implemented at the Bojongsoang WWTP.


Assuntos
Microalgas , Purificação da Água , Animais , Dióxido de Carbono , Indonésia , Biocombustíveis , Biomassa , Estágios do Ciclo de Vida
20.
Heliyon ; 10(3): e24731, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317917

RESUMO

The study assessed the valorisation of primary sludge through HTL and the influence of temperature on the product distribution. The experiments were conducted at different temperatures, 30 min reaction time, and 100 rpm stirring rate. The maximum yield of biocrude produced was 39.47% at 270 °C. The best yield of oils was 23.96% at 300 °C. The lowest yield of asphaltenes was 12.50% at 240 °C. HHV for biocrude were always between 39 and 41 MJ/kg, close to petroleum. Best energy recovery for biocrude was 82% at 270 °C.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa