Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(29): e2300315120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428920

RESUMO

An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Oxirredução , Sistema Enzimático do Citocromo P-450/química , Preparações Farmacêuticas/química , Catálise , Microssomos Hepáticos , Nitrogênio
2.
Chembiochem ; 25(1): e202300539, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837257

RESUMO

Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , DNA
3.
Chembiochem ; : e202400440, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984757

RESUMO

Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e.g. arginine, cysteine and glutamic acid, has been expanded with serine, tyrosine and histidine, among others. Well-defined ADPr-peptides are valuable tools for investigating the exact structures, mechanisms of action and interaction partners of the different flavors of this modification. This review provides a comprehensive overview of synthetic and chemoenzymatic methodologies that enabled the construction of peptides mono-ADP-ribosylated on various amino acids, and close mimetics thereof.

4.
Chemistry ; : e202403277, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300786

RESUMO

Functional group (FG) is one of the cornerstone concepts in organic chemistry and related areas. The wide spread of bioisosterism ideas in medicinal chemistry and beyond caused a striking rise in demand for novel FGs with a defined impact on the developed compound properties. In this work, the evaluation of the 3,3-difluorooxetane unit (3,3-diFox) as a functional group for bioisosteric replacements is disclosed. A comprehensive experimental study (including multigram building block synthesis, quantification of steric and electronic properties, measurements of pKa, LogP, chemical stability, and biological evaluation of the 3,3-diFox-derived bioisostere of a drug candidate) revealed a prominent behavior of the 3,3-diFox fragment as a versatile substituent for early drug discovery programs.

5.
Chemistry ; 30(12): e202304070, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117748

RESUMO

Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.

6.
Bioorg Med Chem Lett ; 110: 129879, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977106

RESUMO

In this study, we synthesized a series of seven benzimidazole derivatives incorporating the structural acidic framework of angiotensin II (Ang II) type 1 receptor (AT1R) antagonists (ARA-II) employing a three-step reaction sequence. The chemical structures were confirmed by 1H NMR, 13C NMR and mass spectral data. Through biosimulation, compounds 1-7 were identified as computational safe hits, thus, best candidates underwent ex vivo testing against two distinct mechanisms implicated in hypertension: antagonism of the Ang II type 1 receptor and the blockade of calcium channel. Molecular docking studies helped to understand at the molecular level the dual vasorelaxant effects with the recognition sites of the AT1R and the L-type calcium channel. In an in vivo spontaneously hypertensive rat model (SHR), intraperitoneally administration of compound 1 at 20 mg/kg resulted in a 25 % reduction in systolic blood pressure, demonstrating both ex vivo vasorelaxant action and in vivo antihypertensive multitarget efficacy. ©2024 Elsevier.


Assuntos
Anti-Hipertensivos , Benzimidazóis , Simulação de Acoplamento Molecular , Ratos Endogâmicos SHR , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Ratos , Relação Estrutura-Atividade , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Receptor Tipo 1 de Angiotensina/metabolismo , Estrutura Molecular , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/síntese química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo L/metabolismo
7.
Bioorg Med Chem ; 102: 117652, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442523

RESUMO

Aromatic rings are critical core substructures in the majority of pharmaceutical compounds. There is much recent interest in replacing aromatic structures with saturated bioisosteres of benzene, which are generally fused or bridged ring systems. These bioisosteres often show improved solubility properties compared to benzene, and may also undergo fewer unwanted metabolic processes. One key reason why aromatic rings have proven so successful in drug design is their rigidity. This paper uses molecular dynamics simulations supported by crystallographic data to assess the rigidity of bicyclopentane and cubane ring systems as two of the most common benzene bioisosteres and compares this to benzene. Whilst a benzene ring is shown to be more flexible than these two bioisosteres in terms of its dihedral ring flexibility, substituents around the ring tend to behave in a much more similar way in both benzene and the bioisosteric systems.


Assuntos
Benzeno , Pentanos , Benzeno/química , Simulação de Dinâmica Molecular , Solubilidade
8.
J Pept Sci ; : e3654, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262129

RESUMO

Radiolabeled peptides play a key role in nuclear medicine to selectively deliver radionuclides to malignancies for diagnosis (imaging) and therapy. Yet, their efficiency is often compromised by low metabolic stability. The use of 1,4-disubstituted 1,2,3-triazoles (1,4-Tzs) as stable amide bond bioisosteres can increase the half-life of peptides in vivo while maintaining their biological properties. Previously, the amide-to-triazole substitution strategy was used for the stabilization of the pansomatostatin radioligand [111In]In-AT2S, resulting in the mono-triazolo-peptidomimetic [111In]In-XG1, a radiotracer with moderately enhanced stability in vivo and retained ability to bind multiple somatostatin receptor (SSTR) subtypes. However, inclusion of additional 1,4-Tz led to a loss of affinity towards SST2R, the receptor overexpressed by most SSTR-positive cancers. To enhance further the stability of [111In]In-XG1, alternative modifications at the enzymatically labile position Thr10-Phe11 were employed. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide conjugates were synthesized with a 1,4-Tz (Asn5-Ψ[Tz]-Phe6) and either a ß-amino acid (ß-Phe11), reduced amide bond (Thr10-Ψ[NH]-Phe11), or N-methylated amino acid (N-Me-Phe11). Two of the new peptidomimetics were more stable in blood plasma in vitro than [111In]In-XG1. Yet none of them retained high affinity towards SST2R. We demonstrate for the first time the combination of the amide-to-triazole substitution strategy with alternative stabilization methods to improve the metabolic stability of tumor-targeting peptides.

9.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244445

RESUMO

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.


Assuntos
Hidrocarbonetos Aromáticos/química , Pentanos/química , Bioensaio , Cristalografia por Raios X , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Pentanos/síntese química , Estereoisomerismo
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653951

RESUMO

Despite their desirable attributes, boronic acids have had a minimal impact in biological contexts. A significant problem has been their oxidative instability. At physiological pH, phenylboronic acid and its boronate esters are oxidized by reactive oxygen species at rates comparable to those of thiols. After considering the mechanism and kinetics of the oxidation reaction, we reasoned that diminishing electron density on boron could enhance oxidative stability. We found that a boralactone, in which a carboxyl group serves as an intramolecular ligand for the boron, increases stability by 104-fold. Computational analyses revealed that the resistance to oxidation arises from diminished stabilization of the p orbital of boron that develops in the rate-limiting transition state of the oxidation reaction. Like simple boronic acids and boronate esters, a boralactone binds covalently and reversibly to 1,2-diols such as those in saccharides. The kinetic stability of its complexes is, however, at least 20-fold greater. A boralactone also binds covalently to a serine side chain in a protein. These attributes confer unprecedented utility upon boralactones in the realms of chemical biology and medicinal chemistry.


Assuntos
Boro/química , Ácidos Borônicos/química , Concentração de Íons de Hidrogênio , Oxirredução
11.
Chem Biodivers ; 21(6): e202400123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494443

RESUMO

Benzimidazole and benzoxazole derivatives are included in the category of medical drugs in a wide range of areas such as anticancer, anticoagulant, antihypertensive, anti- inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, immunomodulators, proton pump inhibitors, hormone modulators, etc. Many researchers have focused on synthesizing more effective benzimidazole and benzoxazole derivatives for screening various biological activities. In addition, there are benzimidazole and benzoxazole rings as bioisosteres of aromatic rings found in drugs used in the treatment of Alzheimer's disease. Because of the diverse activity of the benzimidazole and benzoxazole rings and bioisosteres marketed as drugs for Alzheimer Diseases, designed compounds containing these rings are likely to be effective against Alzheimer's disease. In this study, the effectiveness of compounds containing benzimidazole and benzoxazole rings against Alzheimer's disease will be examined.


Assuntos
Doença de Alzheimer , Benzimidazóis , Benzoxazóis , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Benzoxazóis/química , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Estrutura Molecular , Animais , Relação Estrutura-Atividade
12.
Arch Pharm (Weinheim) ; 357(9): e2400279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38889396

RESUMO

Cyclopenta[g]quinolones of type 4 were designed with the aim to bioisosterically replace the phenol of potent GluN2B ligands such as ifenprodil and Ro 25-6981 by the quinolone system and to restrict the conformational flexibility of the aminopropanol substructure in a cyclopentane system. The designed ligands were synthesized in an eight-step sequence starting with terephthalaldehyde (5). Key steps pf the synthesis were the intramolecular Friedel-Crafts acylation of propionic acids 10 to yield the cyclopenta[g]quinolinediones 11 and the Mannich reaction of diketone 11a followed by conjugate addition at the α,ß-unsaturated ketone 12a. Although the quinolones 13a, 15a, and 16a contain an H-bond donor group (secondary lactam) as ifenprodil and Ro 25-6981, they show only moderate GluN2B affinity (Ki > 410 nM). However, the introduction of lipophilic substituents at the quinolone N-atom resulted in more than 10-fold increased GluN2B affinity of the benzyl and benzyloxymethyl derivatives cis-13c (Ko = 36 nM) and 13e (Ko = 27 nM). All compounds are selective over the phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The benzyl derivative 13c showed six- and threefold selectivity over σ1 and σ2 receptors, respectively.


Assuntos
Quinolonas , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Fenóis/farmacologia , Fenóis/química , Fenóis/síntese química , Animais , Ligantes , Relação Dose-Resposta a Droga
13.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338655

RESUMO

Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.


Assuntos
Peptidomiméticos , Inibidores de Serina Proteinase , Ativador de Plasminogênio Tipo Uroquinase , Ligantes , Peptídeo Hidrolases , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Tripsina , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Serina Endopeptidases , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
14.
Angew Chem Int Ed Engl ; 63(42): e202410554, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-38989571

RESUMO

Amide bioisoterism is a widely used strategy in drug development to fine-tune physicochemical, pharmacokinetic, and metabolic properties, eliminate toxicity and gain intellectual property rights in uncharted chemical space. Of these, oxetane-amines offer particularly exciting possibilities as bioisosteres, although they are less frequently investigated than warranted due to the lack of simple and widely applicable synthetic methods. Herein, we report a two-step, practical, modular, robust, and scalable method for the construction of oxetane-containing amide bioisosteres that relies on the readily available oxetan-3-one. This operationally simple procedure exploits the enhanced reactivity of the keto group of the commercially available oxetan-3-one to form amine-benzotriazole intermediates, which springloaded adducts are then reacted with various aliphatic and aromatic organometallic reagents under mild conditions to afford various amino-oxetanes in good to high yields. The simplicity and broad applicability of the method greatly facilitates the synthesis of derivatives that were previously difficult or impossible to produce. The usefulness of this method in the field medicinal chemistry was also demonstrated by eliminating the well-known metabolic problem of ketoconazole.

15.
Angew Chem Int Ed Engl ; 63(14): e202317333, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38179801

RESUMO

Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.

16.
Angew Chem Int Ed Engl ; 63(13): e202318476, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38288790

RESUMO

Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.

17.
Beilstein J Org Chem ; 20: 859-890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655554

RESUMO

Saturated bioisosteres of substituted benzenes offer opportunities to fine-tune the properties of drug candidates in development. Bioisosteres of para-benzenes, such as those based on bicyclo[1.1.1]pentane, are now very common and can be used to increase aqueous solubility and improve metabolic stability, among other benefits. Bioisosteres of ortho- and meta-benzenes were for a long time severely underdeveloped by comparison. This has begun to change in recent years, with a number of potential systems being reported that can act as bioisosteres for these important fragments. In this review, we will discuss these recent developments, summarizing the synthetic approaches to the different bioisosteres as well as the impact they have on the physiochemical and biological properties of pharmaceuticals and agrochemicals.

18.
Beilstein J Org Chem ; 20: 1880-1893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109294

RESUMO

The concept of bioisostere replacement is of paramount importance in medicinal chemistry, as it can be employed as a rational to expand bioactive chemical space to tackle lead optimization issues like lack of potency, efficacy, and selectivity or pharmacokinetic/dynamic issues. One of the most important building blocks (in the sense of participating in a vast area of chemical space of biological importance) in medicinal chemistry is the 2-phenethyl moiety, a key component of diverse drug-like entities. Although the core 2-phenethylamine structure has been recognized by the drug discovery community, little attention has been given to the various ring-based rescaffolding procedures that can be conducted with this unit. In this regard, a review on the use of 2-heteroarylethylamines displaying pharmacological activity is reported. A detailed description of flexible, amine-opened motifs is provided, that describes therapeutic targets and other potent bioactive examples, which will be a valuable repository of phenyl, heteroaryl, and other replacement units of high value to the drug discovery community.

19.
Chemistry ; 29(70): e202302454, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37731162

RESUMO

Herein, we present previously unavailable C(sp3 )-rich polycyclic hydrocarbon scaffolds that have the potential to become valuable tools in medicinal chemistry and crop science as saturated bioisosteres of benzenoids. We have developed a scalable protocol (up to 50 g from a single synthetic run) for the synthesis of tricyclo[3.3.0.03,7 ]octane (bisnoradamantane or stellane) 1,5-dicarboxylic acid derivatives. X-ray crystallographic analysis of the stellane 1,5-dicarboxylic acid dimethyl ester has revealed that this scaffold is an optimal saturated isostere for ortho-disubstituted benzene where substituents exhibit in-plane topology. The synthetic protocol is based on the oxidative cyclization of dimethyl octahydropentalene-2,5-dicarboxylate (DMOD) through lithiation followed by I2 oxidation. The reaction outcome is determined by the stereochemistry of the substrate. While the endo,endo cis-DMOD, exclusively gives the "unwanted" Claisen cyclization product, the exo,endo cis- and exo,exo cis- stereoisomers afford the desired stellane 1,5-dicarboxylic acid dimethyl ester quantitatively. DFT computations have revealed that the reaction proceeds via the dianion of dimethyl octahydropentalene-2,5-dicarboxylate, which undergoes SET oxidation by I2 to form a radical anion. The subsequent cyclization followed by a second SET oxidation gives the desired stellane derivative.

20.
Bioorg Med Chem Lett ; 91: 129363, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295616

RESUMO

Fluorinated alcohols and phenols are potentially useful as bioisosteres of the carboxylic acid functional group. To enable a direct comparison of the properties of fluorinated carboxylic acid surrogates with those of other commonly used, non-fluorinated bioisosteres, we conducted a structure-property relationship (SPR) study based on matched molecular pair (MMP) analyses. A series of representative examples have been characterized by experimentally determining physicochemical properties, such as acidity (pKa), lipophilicity (logD7.4), and permeability (PAMPA). The results presented can help estimate the relative changes in physicochemical properties that may be attainable by replacing the carboxylic acid functional group with fluorine containing surrogate structures.


Assuntos
Álcoois , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Flúor/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa