Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34642739

RESUMO

Development of interactive web applications to deposit, visualize and analyze biological datasets is a major subject of bioinformatics. R is a programming language for data science, which is also one of the most popular languages used in biological data analysis and bioinformatics. However, building interactive web applications was a great challenge for R users before the Shiny package was developed by the RStudio company in 2012. By compiling R code into HTML, CSS and JavaScript code, Shiny has made it incredibly easy to build web applications for the large R community in bioinformatics and for even non-programmers. Over 470 biological web applications have been developed with R/Shiny up to now. To further promote the utilization of R/Shiny, we reviewed the development of biological web applications with R/Shiny, including eminent biological web applications built with R/Shiny, basic steps to build an R/Shiny application, commonly used R packages to build the interface and server of R/Shiny applications, deployment of R/Shiny applications in the cloud and online resources for R/Shiny.


Assuntos
Biologia Computacional , Software , Linguagens de Programação
2.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35724625

RESUMO

The rate of biological data generation has increased dramatically in recent years, which has driven the importance of databases as a resource to guide innovation and the generation of biological insights. Given the complexity and scale of these databases, automatic data classification is often required. Biological data sets are often hierarchical in nature, with varying degrees of complexity, imposing different challenges to train, test and validate accurate and generalizable classification models. While some approaches to classify hierarchical data have been proposed, no guidelines regarding their utility, applicability and limitations have been explored or implemented. These include 'Local' approaches considering the hierarchy, building models per level or node, and 'Global' hierarchical classification, using a flat classification approach. To fill this gap, here we have systematically contrasted the performance of 'Local per Level' and 'Local per Node' approaches with a 'Global' approach applied to two different hierarchical datasets: BioLip and CATH. The results show how different components of hierarchical data sets, such as variation coefficient and prediction by depth, can guide the choice of appropriate classification schemes. Finally, we provide guidelines to support this process when embarking on a hierarchical classification task, which will help optimize computational resources and predictive performance.


Assuntos
Aprendizado Profundo , Algoritmos , Bases de Dados Factuais
3.
J Proteome Res ; 22(8): 2570-2576, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37458416

RESUMO

Ectodomain shedding of membrane proteins is a proteolytic event involved in several biological phenomena, including inflammation, development, diseases, and cancer progression. Though ectodomain shedding is a post-translational modification that plays an important role in cellular regulation, this biological phenomenon is seriously underannotated in public protein databases. Given the importance of the shedding events, we conducted a comprehensive literature review for membrane protein shedding and constructed the database, SheddomeDB in 2017. In response to user feedback, novel shedding findings, more associated biomedical events, and the advance in web technology, we revised SheddomeDB to a new version, SheddomeDB 2023. The revised SheddomeDB 2023 includes 481 protein entries across seven species; all the content was manually verified and curated. The content of SheddomeDB 2023 mainly came from a comprehensive literature survey by our newly developed semiautomated screening tool. We also integrated verified and updated cleavage and secretome information from other databases into the revision. In addition, SheddomeDB 2023 features a graphical presentation of cleavage information and a user-friendly interface for searching and browsing entries in the database. This revised comprehensive database of ectodomain shedding is expected to benefit biomedical researchers across different disciplines.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteínas de Membrana/metabolismo , Proteólise , Processamento de Proteína Pós-Traducional , Bases de Dados de Proteínas
4.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33497436

RESUMO

Fertility refers to the ability of animals to maintain reproductive function and give birth to offspring, which is an important indicator to measure the productivity of animals. Fertility is affected by many factors, among which environmental factors may also play key roles. During the past years, substantial research studies have been conducted to detect the factors related to fecundity, including genetic factors and environmental factors. However, the identified genes associated with fertility from countless previous studies are randomly dispersed in the literature, whereas some other novel fertility-related genes are needed to detect from omics-based datasets. Here, we constructed a fertility index factor database FifBase based on manually curated published literature and RNA-Seq datasets. During the construction of the literature group, we obtained 3301 articles related to fecundity for 13 species from PubMed, involving 2823 genes, which are related to 75 fecundity indicators or 47 environmental factors. Eventually, 1558 genes associated with fertility were filtered in 10 species, of which 1088 and 470 were from RNA-Seq datasets and text mining data, respectively, involving 2910 fertility-gene pairs and 58 fertility-environmental factors. All these data were cataloged into FifBase (http://www.nwsuaflmz.com/FifBase/), where the fertility-related factor information, including gene annotation and environmental factors, can be browsed, retrieved and downloaded with the user-friendly interface.


Assuntos
Animais Domésticos/genética , Mineração de Dados , Bases de Dados Genéticas , Fertilidade , Anotação de Sequência Molecular , Software , Animais
5.
BMC Bioinformatics ; 22(1): 565, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823464

RESUMO

BACKGROUND: Literature-based gene ontology (GO) annotation is a process where expert curators use uniform expressions to describe gene functions reported in research papers, creating computable representations of information about biological systems. Manual assurance of consistency between GO annotations and the associated evidence texts identified by expert curators is reliable but time-consuming, and is infeasible in the context of rapidly growing biological literature. A key challenge is maintaining consistency of existing GO annotations as new studies are published and the GO vocabulary is updated. RESULTS: In this work, we introduce a formalisation of biological database annotation inconsistencies, identifying four distinct types of inconsistency. We propose a novel and efficient method using state-of-the-art text mining models to automatically distinguish between consistent GO annotation and the different types of inconsistent GO annotation. We evaluate this method using a synthetic dataset generated by directed manipulation of instances in an existing corpus, BC4GO. We provide detailed error analysis for demonstrating that the method achieves high precision on more confident predictions. CONCLUSIONS: Two models built using our method for distinct annotation consistency identification tasks achieved high precision and were robust to updates in the GO vocabulary. Our approach demonstrates clear value for human-in-the-loop curation scenarios.


Assuntos
Biologia Computacional , Mineração de Dados , Bases de Dados de Proteínas , Ontologia Genética , Humanos , Anotação de Sequência Molecular
6.
Brief Bioinform ; 18(2): 215-225, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26891982

RESUMO

Bioinformatics web-based resources and databases are precious references for most biological laboratories worldwide. However, the quality and reliability of the information they provide depends on them being used in an appropriate way that takes into account their specific features. Huge collections of gene expression data are currently publicly available, ready to support the understanding of gene and genome functionalities. In this context, tools and resources for gene co-expression analyses have flourished to exploit the 'guilty by association' principle, which assumes that genes with correlated expression profiles are functionally related. In the case of Arabidopsis thaliana, the reference species in plant biology, the resources available mainly consist of microarray results. After a general overview of such resources, we tested and compared the results they offer for gene co-expression analysis. We also discuss the effect on the results when using different data sets, as well as different data normalization approaches and parameter settings, which often consider different metrics for establishing co-expression. A dedicated example analysis of different gene pools, implemented by including/excluding mutant samples in a reference data set, showed significant variation of gene co-expression occurrence, magnitude and direction. We conclude that, as the heterogeneity of the resources and methods may produce different results for the same query genes, the exploration of more than one of the available resources is strongly recommended. The aim of this article is to show how best to integrate data sources and/or merge outputs to achieve robust analyses and reliable interpretations, thereby making use of diverse data resources an opportunity for added value.


Assuntos
Arabidopsis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes
7.
Hum Genomics ; 12(1): 36, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996917

RESUMO

BACKGROUND: Germline pathogenic variants in the breast cancer type 1 susceptibility gene BRCA1 are associated with a 60% lifetime risk for breast and ovarian cancer. This overall risk estimate is for all BRCA1 variants; obviously, not all variants confer the same risk of developing a disease. In cancer patients, loss of BRCA1 function in tumor tissue has been associated with an increased sensitivity to platinum agents and to poly-(ADP-ribose) polymerase (PARP) inhibitors. For clinical management of both at-risk individuals and cancer patients, it would be important that each identified genetic variant be associated with clinical significance. Unfortunately for the vast majority of variants, the clinical impact is unknown. The availability of results from studies assessing the impact of variants on protein function may provide insight of crucial importance. RESULTS AND CONCLUSION: We have collected, curated, and structured the molecular and cellular phenotypic impact of 3654 distinct BRCA1 variants. The data was modeled in triple format, using the variant as a subject, the studied function as the object, and a predicate describing the relation between the two. Each annotation is supported by a fully traceable evidence. The data was captured using standard ontologies to ensure consistency, and enhance searchability and interoperability. We have assessed the extent to which functional defects at the molecular and cellular levels correlate with the clinical interpretation of variants by ClinVar submitters. Approximately 30% of the ClinVar BRCA1 missense variants have some molecular or cellular assay available in the literature. Pathogenic variants (as assigned by ClinVar) have at least some significant functional defect in 94% of testable cases. For benign variants, 77% of ClinVar benign variants, for which neXtProt Cancer variant portal has data, shows either no or mild experimental functional defects. While this does not provide evidence for clinical interpretation of variants, it may provide some guidance for variants of unknown significance, in the absence of more reliable data. The neXtProt Cancer variant portal ( https://www.nextprot.org/portals/breast-cancer ) contains over 6300 observations at the molecular and/or cellular level for BRCA1 variants.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Adulto , Idoso , Proteína BRCA1/química , Neoplasias da Mama/patologia , Biologia Computacional , Feminino , Variação Genética , Mutação em Linhagem Germinativa/genética , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Conformação Proteica
8.
Brief Bioinform ; 17(2): 193-203, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26059461

RESUMO

MicroRNAs (miRNA) play critical roles in regulating gene expressions at the posttranscriptional levels. The prediction of disease-related miRNA is vital to the further investigation of miRNA's involvement in the pathogenesis of disease. In previous years, biological experimentation is the main method used to identify whether miRNA was associated with a given disease. With increasing biological information and the appearance of new miRNAs every year, experimental identification of disease-related miRNAs poses considerable difficulties (e.g. time-consumption and high cost). Because of the limitations of experimental methods in determining the relationship between miRNAs and diseases, computational methods have been proposed. A key to predict potential disease-related miRNA based on networks is the calculation of similarity among diseases and miRNA over the networks. Different strategies lead to different results. In this review, we summarize the existing computational approaches and present the confronted difficulties that help understand the research status. We also discuss the principles, efficiency and differences among these methods. The comprehensive comparison and discussion elucidated in this work provide constructive insights into the matter.


Assuntos
Predisposição Genética para Doença/genética , MicroRNAs/genética , Modelos Genéticos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Análise de Sequência de RNA/métodos , Simulação por Computador , Mineração de Dados/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica/genética , Humanos
9.
BMC Cancer ; 18(1): 139, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409462

RESUMO

BACKGROUND: While the incidence of esophageal and gastric cancers is increasing, the prognosis of these cancers remains bleak. Endoscopy and surgery are the standard treatments for localized tumors, but multimodal treatments, associated chemotherapy, targeted therapies, immunotherapy, radiotherapy, and surgery are needed for the vast majority of patients who present with locally advanced or metastatic disease at diagnosis. Although survival has improved, most patients still present with advanced disease at diagnosis. In addition, most patients exhibit a poor or incomplete response to treatment, experience early recurrence and have an impaired quality of life. Compared with several other cancers, the therapeutic approach is not personalized, and research is much less developed. It is, therefore, urgent to hasten the development of research protocols, and consequently, develop a large, ambitious and innovative tool through which future scientific questions may be answered. This research must be patient-related so that rapid feedback to the bedside is achieved and should aim to identify clinical-, biological- and tumor-related factors that are associated with treatment resistance. Finally, this research should also seek to explain epidemiological and social facets of disease behavior. METHODS: The prospective FREGAT database, established by the French National Cancer Institute, is focused on adult patients with carcinomas of the esophagus and stomach and on whatever might be the tumor stage or therapeutic strategy. The database includes epidemiological, clinical, and tumor characteristics data as well as follow-up, human and social sciences quality of life data, along with a tumor and serum bank. DISCUSSION: This innovative method of research will allow for the banking of millions of data for the development of excellent basic, translational and clinical research programs for esophageal and gastric cancer. This will ultimately improve general knowledge of these diseases, therapeutic strategies and patient survival. This database was initially developed in France on a nationwide basis, but currently, the database is available for worldwide contributions with respect to the input of patient data or the request for data for scientific projects. TRIAL REGISTRATION: The FREGAT database has a dedicated website ( www.fregat-database.org ) and is registered on the Clinicaltrials.gov site, number NCT 02526095 , since August 8, 2015.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Factuais , Neoplasias Esofágicas/terapia , Neoplasias Gástricas/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Neoplasias Esofágicas/patologia , Feminino , França , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Neoplasias Gástricas/patologia , Adulto Jovem
10.
Brief Bioinform ; 15(5): 699-709, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23894104

RESUMO

In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular, hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the relationship between network structure and function, the mechanism through which biological parts or biomolecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork of biomolecules that performs a particular function. Understanding the mechanism of building functional networks would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological circuit to perform a target function. We propose a biological functional network database, named BioFNet, which can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing the simulation program for the mathematical models of the functional networks, visualizing the simulated results. It presents a sound basis for rational design of biochemical networks and for understanding how functional networks are assembled to create complex high-level functions, which would reveal design principles underlying molecular architectures.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Modelos Teóricos
11.
Biochim Biophys Acta ; 1834(11): 2442-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23395702

RESUMO

Over recent years, analyses of secretomes (complete sets of secreted proteins) have been reported in various organisms, cell types, and pathologies and such studies are quickly gaining popularity. Fungi secrete enzymes can break down potential food sources; plant secreted proteins are primarily parts of the cell wall proteome; and human secreted proteins are involved in cellular immunity and communication, and provide useful information for the discovery of novel biomarkers, such as for cancer diagnosis. Continuous development of methodologies supports the wide identification and quantification of secreted proteins in a given cellular state. The role of secreted factors is also investigated in the context of the regulation of major signaling events, and connectivity maps are built to describe the differential expression and dynamic changes of secretomes. Bioinformatics has become the bridge between secretome data and computational tasks for managing, mining, and retrieving information. Predictions can be made based on this information, contributing to the elucidation of a given organism's physiological state and the determination of the specific malfunction in disease states. Here we provide an overview of the available bioinformatics databases and software that are used to analyze the biological meaning of secretome data, including descriptions of the main functions and limitations of these tools. The important challenges of data analysis are mainly related to the integration of biological information from dissimilar sources. Improvements in databases and developments in software will likely substantially contribute to the usefulness and reliability of secretome studies. This article is part of a Special Issue entitled: An Updated Secretome.


Assuntos
Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Biologia de Sistemas/métodos , Animais , Bases de Dados de Proteínas , Humanos , Software
12.
iScience ; 27(4): 109567, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617561

RESUMO

The human respiratory system is a complex and important system that can suffer a variety of diseases. Single-cell sequencing technologies, applied in many respiratory disease studies, have enhanced our ability in characterizing molecular and phenotypic features at a single-cell resolution. The exponentially increasing data from these studies have consequently led to difficulties in data sharing and analysis. Here, we present scMoresDB, a single-cell multi-omics database platform with extensive omics types tailored for human respiratory diseases. scMoresDB re-analyzes single-cell multi-omics datasets, providing a user-friendly interface with cross-omics search capabilities, interactive visualizations, and analytical tools for comprehensive data sharing and integrative analysis. Our example applications highlight the potential significance of BSG receptor in SARS-CoV-2 infection as well as the involvement of HHIP and TGFB2 in the development and progression of chronic obstructive pulmonary disease. scMoresDB significantly increases accessibility and utility of single-cell data relevant to human respiratory system and associated diseases.

13.
iScience ; 26(2): 105928, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36619367

RESUMO

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

14.
iScience ; 26(6): 106933, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378342

RESUMO

The global prevalence and burden of musculoskeletal (MSK) disorders are immense. Advancements in next-generation sequencing (NGS) have generated vast amounts of data, accelerating the research of pathological mechanisms and the development of therapeutic approaches for MSK disorders. However, scattered datasets across various repositories complicate uniform analysis and comparison. Here, we introduce MSdb, a database for visualization and integrated analysis of next-generation sequencing data from human musculoskeletal system, along with manually curated patient phenotype data. MSdb provides various types of analysis, including sample-level browsing of metadata information, gene/miRNA expression, and single-cell RNA-seq dataset. In addition, MSdb also allows integrated analysis for cross-samples and cross-omics analysis, including customized differentially expressed gene/microRNA analysis, microRNA-gene network, scRNA-seq cross-sample/disease integration, and gene regulatory network analysis. Overall, systematic categorizing, standardized processing, and freely accessible knowledge features MSdb a valuable resource for MSK research community.

15.
iScience ; 26(6): 106791, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37213225

RESUMO

AMP-activated protein kinase (AMPK) is a critical cellular energy sensor at the interface of metabolism and cancer. However, the role of AMPK in carcinogenesis remains unclear. Here, through analysis of the TCGA melanoma dataset, we found that PRKAA2 gene that encodes the α2 subunit of AMPK is mutated in ∼9% of cutaneous melanomas, and these mutations tend to co-occur with NF1 mutations. Knockout of AMPKα2 promoted anchorage-independent growth of NF1-mutant melanoma cells, whereas ectopic expression of AMPKα2 inhibited their growth in soft agar assays. Moreover, loss of AMPKα2 accelerated tumor growth of NF1-mutant melanoma and enhanced their brain metastasis in immune-deficient mice. Our findings support that AMPKα2 serves as a tumor suppressor in NF1-mutant melanoma and suggest that AMPK could be a therapeutic target for treating melanoma brain metastasis.

16.
Curr Protoc ; 3(4): e731, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37014762

RESUMO

FlyBase (www.flybase.org) is the primary online database of genetic, genomic, and functional information about Drosophila melanogaster. The long and rich history of Drosophila research, combined with recent surges in genomic-scale and high-throughput technologies, means that FlyBase now houses a huge quantity of data. Researchers need to be able to query these data rapidly and intuitively, and the QuickSearch tool has been designed to meet these needs. This tool is conveniently located on the FlyBase homepage and is organized into a series of simple tabbed interfaces that cover the major data and annotation classes within the database. This article describes the functionality of all aspects of the QuickSearch tool. With this knowledge, FlyBase users will be equipped to take full advantage of all QuickSearch features and thereby gain improved access to data relevant to their research. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Using the "Search FlyBase" tab of QuickSearch Basic Protocol 2: Using the "Data Class" tab of QuickSearch Basic Protocol 3: Using the "References" tab of QuickSearch Basic Protocol 4: Using the "Gene Groups" tab of QuickSearch Basic Protocol 5: Using the "Pathways" tab of QuickSearch Basic Protocol 6: Using the "GO" tab of QuickSearch Basic Protocol 7: Using the "Protein Domains" tab of QuickSearch Basic Protocol 8: Using the "Expression" tab of QuickSearch Basic Protocol 9: Using the "GAL4 etc" tab of QuickSearch Basic Protocol 10: Using the "Phenotype" tab of QuickSearch Basic Protocol 11: Using the "Human Disease" tab of QuickSearch Basic Protocol 12: Using the "Homologs" tab of QuickSearch Support Protocol 1: Managing FlyBase hit lists.


Assuntos
Drosophila melanogaster , Genoma de Inseto , Animais , Humanos , Drosophila melanogaster/genética , Genes de Insetos , Bases de Dados Genéticas , Drosophila/genética
17.
iScience ; 26(3): 106138, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926654

RESUMO

The public-domain International Tree-Ring Data Bank (ITRDB) is an under-utilized dataset to improve existing estimates of global tree longevity. We used the longest continuous ring-width series of existing ITRDB collections as an index of maximum tree age for that species and site. Using a total of 3,689 collections, we obtained longevity estimates for 237 unique tree species, 157 conifers and 80 angiosperms, distributed all over the world. More than half of the species (167) were represented by no more than 10 collections, and a similar number of species (144) reached longevity greater than 300 years. Maximum tree ages exceeded 1,000 years for several species (22), all of them conifers, whereas angiosperm longevity peaked around 500 years. Given the current emphasis on identifying human-induced impacts on global systems, detailed analyses of ITRDB holdings provide one of the most reliable sources of information for tree longevity as an ecological trait.

18.
iScience ; 26(12): 108525, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162030

RESUMO

Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.

19.
iScience ; 25(7): 104581, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35832893

RESUMO

Investigator-generated transcriptomic datasets interrogating circulating immune cell (CIC) gene expression in clinical type 1 diabetes (T1D) have underappreciated re-use value. Here, we repurposed these datasets to create an open science environment for the generation of hypotheses around CIC signaling pathways whose gain or loss of function contributes to T1D pathogenesis. We firstly computed sets of genes that were preferentially induced or repressed in T1D CICs and validated these against community benchmarks. We then inferred and validated signaling node networks regulating expression of these gene sets, as well as differentially expressed genes in the original underlying T1D case:control datasets. In a set of three use cases, we demonstrated how informed integration of these networks with complementary digital resources supports substantive, actionable hypotheses around signaling pathway dysfunction in T1D CICs. Finally, we developed a federated, cloud-based web resource that exposes the entire data matrix for unrestricted access and re-use by the research community.

20.
iScience ; 25(10): 105244, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36274950

RESUMO

Mitochondria are major organelles responsible for cellular energy and metabolism, and their dysfunction is tightly linked to cancer. The mitochondrial ribosome (mitoribosome) is a protein complex consisting of 82 mitoribosomal proteins (MRPs) encoded by nuclear genes and is essential for mitochondrial protein synthesis. However, their roles in tumorigenesis remain poorly understood. We performed pan-cancer analyses of 18,177 tumors representing 28 cancer types to determine somatic alterations of MRP genes as a genetic basis for tumorigenesis. We identified a set of 20 altered MRPs known to be involved in early assembly of the mitoribosome complex. We found that tumors with affected MRPs were associated with impaired mitochondrial functions and TP53 mutations accompanied by increased genomic instability and intra-tumor heterogeneity. MRP deletions were associated with poor survival. Our results reveal a key role for mitochondrial ribosome biogenesis in tumor malignancy across cancer types.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa