Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Biophys J ; 46(1): 77-89, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27270294

RESUMO

The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg2+ and Ca2+. Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.


Assuntos
Bacillaceae , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Cátions Bivalentes/farmacologia , Modelos Moleculares , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
2.
Heliyon ; 9(8): e18916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609422

RESUMO

Catalases are crucial antioxidant enzymes that regulate plants responses to different biotic and abiotic stresses. It has been previously shown that the activities of durum wheat catalase proteins (TdCAT1) were stimulated in the presence of divalent cations Mn2+, Mg2+, Fe2+, Zn2+, and Ca2+. In addition, TdCAT1s can interact with calmodulins in calcium-independent manner, and this interaction stimulates its catalytic activity in a calcium-dependent manner. Moreover, this activity is further enhanced by Mn2+ cations. The current study showed that wheat catalase presents different phosphorylation targets. Besides, we demonstrated that catalase is able to interact with Mitogen Activated Proteins kinases via a conserved domain. This interaction activates wheat catalase independently of its phosphorylation status but is more promoted by Mn2+, Fe2+ and Ca2+ divalent cations. Interestingly, we have demonstrated that durum wheat catalase activity is differentially regulated by Mitogen Activated Proteins kinases and Calmodulins in the presence of calcium. Moreover, the V0 of the reaction increase gradually following the increasing quantities of Mn2+ divalent cations. Such results have never been described before and suggest i) complex regulatory mechanisms exerted on wheat catalase, ii) divalent cations (Mn2+; Mg2+; Ca2+ and Fe2+) act as key cofactors in these regulatory mechanisms.

3.
Front Plant Sci ; 10: 946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379914

RESUMO

The high copper (Cu) concentration in vineyard soils causes the increase of Cu toxicity symptoms in young grapevines. Recently, intercropping of grapevine and oat was shown to reduce Cu toxicity effects, modulating the root ionome. On these bases, the focus of the work was to investigate the impact of Cu toxicity of either monocropped or oat-intercropped grapevine rootstocks plants (196.17 and Fercal), at both phenotypic (i.e., root architecture), and molecular (i.e., expression of transporters) levels. The results showed a different response in terms of root morphology that are both rootstock- and cropping system dependent. Moreover, the expression pattern of transporter genes (i.e., VvCTr, VvNRAMP, and VvIRT1) in monocropped grapevine might resemble a Mn deficiency response induced by the excess of Cu, especially in Fercal plants. The gene expression in intercropped grapevines suggested rootstock-specific response mechanisms, depending on Cu levels. In fact, at low Cu concentrations, Fercal enhanced both root system growth and transporter genes expression; contrarily, 196.17 increased apoplast divalent cations accumulation and transporters expression. At high Cu concentrations, Fercal increased the expression of all bivalent cation transporters and, as previously observed, enhanced the release of root exudates, whereas the 196.17 only modulated transporters. In conclusion, our results might suggest that the different adaptation strategies of the two rootstocks to Cu toxicity could be mainly ascribable to a fine-tuning of bivalent cations transporters expression at root level.

4.
Water Res ; 103: 74-82, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27438902

RESUMO

Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions.


Assuntos
Ferro/química , Purificação da Água , Arsênio/química , Eletrocoagulação , Escherichia coli , Fosfatos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa