RESUMO
This study reports the enhanced chemical resistance of a blended concrete mix (CFNI) made with 40 wt.% fly ash, 2 wt.% nanoparticles, and 2 wt.% sodium nitrite inhibitor as partial replacement of cement against calcium leaching, acid and sulfate attacks. The concrete test specimens of four different compositions were fabricated and immersed in natural seawater, 3% sulfuric acid solution, and 10% magnesium sulfate solution for 120 days. Long-term chemical deterioration of the concrete systems is evaluated by assessing visual changes of the specimens and solutions along with the changes in percentage mass loss, compressive strength of the concrete, pH of the solution, and dimensions. The results indicate that CFNI concrete exhibits a superior resistance against chemical attack under all the three aggressive environments. Detailed chemical characterization of the specimens, carried out using XRD, FTIR, and thermogravimetric analysis, reveal a reduced CaO content, absence of deterioration phases like ettringite, brucite, and enhanced C-S-H content in the CFNI concrete. The addition of nanoparticles and inhibitors into fly ash concrete has lowered w/c ratio, increased surface pH, enabled conversion of soluble calcium hydroxide into insoluble calcium silicate hydrate, filled pores/voids, and reduced shrinkage and cracking. The compact microstructure of the CFNI prevented leaching and reduced the ingress of aggressive chemical ions into the concrete. Our results demonstrate that incorporation of nanoparticles and inhibitor into the fly ash concrete composition is ideally suited for the design of high-quality, low-permeable concrete structures that is the key for enhanced chemical resistance in natural and industrial environments.
Assuntos
Cinza de Carvão , Materiais de Construção , Força Compressiva , Água do Mar , SulfatosRESUMO
Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.