Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38095857

RESUMO

Molecular dynamics (MD) is the primary computational method by which modern structural biology explores macromolecule structure and function. Boltzmann generators have been proposed as an alternative to MD, by replacing the integration of molecular systems over time with the training of generative neural networks. This neural network approach to MD enables convergence to thermodynamic equilibrium faster than traditional MD; however, critical gaps in the theory and computational feasibility of Boltzmann generators significantly reduce their usability. Here, we develop a mathematical foundation to overcome these barriers; we demonstrate that the Boltzmann generator approach is sufficiently rapid to replace traditional MD for complex macromolecules, such as proteins in specific applications, and we provide a comprehensive toolkit for the exploration of molecular energy landscapes with neural networks.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Redes Neurais de Computação , Termodinâmica
2.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241789

RESUMO

Machine learning has achieved remarkable success across a broad range of scientific and engineering disciplines, particularly its use for predicting native protein structures from sequence information alone. However, biomolecules are inherently dynamic, and there is a pressing need for accurate predictions of dynamic structural ensembles across multiple functional levels. These problems range from the relatively well-defined task of predicting conformational dynamics around the native state of a protein, which traditional molecular dynamics (MD) simulations are particularly adept at handling, to generating large-scale conformational transitions connecting distinct functional states of structured proteins or numerous marginally stable states within the dynamic ensembles of intrinsically disordered proteins. Machine learning has been increasingly applied to learn low-dimensional representations of protein conformational spaces, which can then be used to drive additional MD sampling or directly generate novel conformations. These methods promise to greatly reduce the computational cost of generating dynamic protein ensembles, compared to traditional MD simulations. In this review, we examine recent progress in machine learning approaches towards generative modeling of dynamic protein ensembles and emphasize the crucial importance of integrating advances in machine learning, structural data, and physical principles to achieve these ambitious goals.


Assuntos
Proteínas Intrinsicamente Desordenadas , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa