Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34731848

RESUMO

Most analyses of the mechanical deformation of electrode materials of lithium-ion battery in the framework of continuum mechanics suggest the occurring of structural damage/degradation during the de-lithiation phase and cannot explain the lithiation-induced damage/degradation in electrode materials, as observed experimentally. In this work, we present first-principle analysis of the interaction between two adjacent silicon atoms from the Stillinger-Weber two-body potential and obtain the critical separation between the two silicon atoms for the rupture of Si-Si bonds. Simple calculation of the engineering-tensile strain for the formation of Li-Si intermetallic compounds from the lithiation of silicon reveals that cracking and cavitation in lithiated silicon can occur due to the formation of Li-Si intermetallic compounds. Assuming the proportionality between the net mass flux across the tip surface of a slit crack and the migration rate of the crack tip, we develop analytical formulas for the growth and healing of the slit crack controlled by lithiation and de-lithiation, respectively. It is the combinational effects of the state of charge, the radius of curvature of the crack tip and local electromotive force that determine the cycling-induced growth and healing of surface cracks in lithiated silicon.

2.
Biol Cell ; 109(7): 255-272, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28543271

RESUMO

BACKGROUND INFORMATION: Integrin-mediated adhesion is a key process by which cells physically connect with their environment, and express sensitivity and adaptation through mechanotransduction. A critical step of cell adhesion is the formation of the first bonds which individually generate weak contacts (∼tens pN) but can sustain thousand times higher forces (∼tens nN) when associated. RESULTS: We propose an experimental validation by multiple bond force spectroscopy (MFS) of a stochastic model predicting adhesion reinforcement permitted by non-cooperative, multiple bonds on which force is homogeneously distributed (called parallel bond configuration). To do so, spherical probes (diameter: 6.6 µm), specifically coated by RGD-peptide to bind integrins, are used to statically indent and homogenously stretch the multiple bonds created for short contact times (2 s) between the bead and the surface of epithelial cells (A549). Using different separation speeds (v = 2, 5, 10 µm/s) and measuring cellular Young's modulus as well as the local stiffness preceding local rupture events, we obtain cell-by-cell the effective loading rates both at the global cell level and at the local level of individual constitutive bonds. Local rupture forces are in the range: f*=60-115 pN , whereas global rupture (detachment) forces reach F*=0.8-1.7 nN . Global and local rupture forces both exhibit linear dependencies with the effective loading rate, the slopes of these two linear relationships providing an estimate of the number of independent integrin bonds constituting the tested multiple bond structure (∼12). CONCLUSIONS: The MFS method enables to validate the reinforcement of integrin-mediated adhesion induced by the multiple bond configuration in which force is homogeneously distributed amongst parallel bonds. Local rupture events observed in the course of a spectroscopy manoeuver (MFS) lead to rupture force values considered in the literature as single-integrin bonds. SIGNIFICANCE: Adhesion reinforcement permitted by the parallel multiple bond association is particularly challenging to verify for two reasons: first, it is difficult to control precisely the direction of forces experimentally, and second, because both global and local bond rupture forces depend on the effective loading rate applied to the bond. Here, we propose an integrin-specific MFS method capable of detecting bond number and characterising bond configuration and its impact on adhesion strength.


Assuntos
Células Epiteliais Alveolares/citologia , Adesão Celular , Integrinas/fisiologia , Mecanotransdução Celular , Microscopia de Força Atômica/métodos , Células A549 , Células Epiteliais Alveolares/fisiologia , Humanos
3.
Anal Bioanal Chem ; 409(4): 891-901, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838753

RESUMO

The stability of double-stranded DNA (dsDNA) was assessed on the basis of unwinding force measurement. Unwinding force was measured directly with a quartz crystal microbalance (QCM). The amplitude of its surface oscillations was controlled by supplying variable alternate voltage. Under smoothly increasing amplitude of QCM surface oscillations, dsDNA fixed on QCM surface through one of its ends got unwound. This procedure allows reliable measurement of rupture force as small as 5-10 pN. It was demonstrated that oscillations of the surface, with dsDNA bound through one of its ends to this surface, at a frequency of 14 MHz, cause helix unwinding to form two complementary parts due to viscous forces of the liquid medium. Unwinding starts at the upper end. This was proven using oligonucleotide duplexes containing mismatches in different positions. For duplexes containing complementary 20 base pairs, the helix unwinding force is equal to 30-40 pN, which is in agreement with the data obtained by means of atomic-force microscopy (AFM) for the case of unzipping mode. Graphical Abstract Rupture force depending on mismatch position in dsDNA.


Assuntos
DNA/química , Hibridização de Ácido Nucleico , Técnicas de Microbalança de Cristal de Quartzo/métodos , Sequência de Bases , Desnaturação de Ácido Nucleico , Viscosidade
4.
ACS Biomater Sci Eng ; 10(5): 2945-2955, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38669114

RESUMO

Metal-coordination bonds, a highly tunable class of dynamic noncovalent interactions, are pivotal to the function of a variety of protein-based natural materials and have emerged as binding motifs to produce strong, tough, and self-healing bioinspired materials. While natural proteins use clusters of metal-coordination bonds, synthetic materials frequently employ individual bonds, resulting in mechanically weak materials. To overcome this current limitation, we rationally designed a series of elastin-like polypeptide templates with the capability of forming an increasing number of intermolecular histidine-Ni2+ metal-coordination bonds. Using single-molecule force spectroscopy and steered molecular dynamics simulations, we show that templates with three histidine residues exhibit heterogeneous rupture pathways, including the simultaneous rupture of at least two bonds with more-than-additive rupture forces. The methodology and insights developed improve our understanding of the molecular interactions that stabilize metal-coordinated proteins and provide a general route for the design of new strong, metal-coordinated materials with a broad spectrum of dissipative time scales.


Assuntos
Histidina , Simulação de Dinâmica Molecular , Níquel , Histidina/química , Níquel/química , Elastina/química , Proteínas/química , Peptídeos/química
5.
ACS Appl Mater Interfaces ; 12(49): 55399-55410, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33258375

RESUMO

By focusing the power of sound, acoustic stimulation (i.e., often referred to as sonication) enables numerous "green chemistry" pathways to enhance chemical reaction rates, for instance, of mineral dissolution in aqueous environments. However, a clear understanding of the atomistic mechanism(s) by which acoustic stimulation promotes mineral dissolution remains unclear. Herein, by combining nanoscale observations of dissolving surface topographies using vertical scanning interferometry, quantifications of mineral dissolution rates via analysis of solution compositions using inductively coupled plasma optical emission spectrometry, and classical molecular dynamics simulations, we reveal how acoustic stimulation induces dissolution enhancement. Across a wide range of minerals (Mohs hardness ranging from 3 to 7, surface energy ranging from 0.3 to 7.3 J/m2, and stacking fault energy ranging from 0.8 to 10.0 J/m2), we show that acoustic fields enhance mineral dissolution rates (reactivity) by inducing atomic dislocations and/or atomic bond rupture. The relative contributions of these mechanisms depend on the mineral's underlying mechanical properties. Based on this new understanding, we create a unifying model that comprehensively describes how cavitation and acoustic stimulation processes affect mineral dissolution rates.

6.
J Mol Model ; 25(6): 161, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31089813

RESUMO

Mechanical strength of silicate glasses is known to decrease markedly due to the adsorption of molecules from the environment, especially in aqueous alkali solutions. This effect, known as the adsorption-induced reduction of strength (AIRS), has not yet been fully understood. Here, the dependence on the chemical nature and electronic properties of adsorbates of the AIRS of siloxane bonds in silica was studied by means of quantum-chemical calculations at the wB97X-D3/def2-TZVP level of theory. A siloxane bond was modelled by H3Si-O-SiH3 and (HO)3Si-O-Si(OH)3 clusters, and the AIRS was simulated by a linear tensile deformation of the siloxane bond in the presence of the following adsorbates: OH-, Cl-, H2O, H+ and H3O+. Potential energy profiles and derivative force curves of the siloxane bond rupture were obtained. The varying effect of the adsorbates on the energy-force characteristics of the AIRS can be explained by changes in the bond lengths and electron occupancy. It is shown that the AIRS of the siloxane bonds increases with an increase in the nucleophilicity of the adsorbates, and correlates with an adsorbate-induced redistribution of electron density.

7.
J Microbiol Methods ; 143: 94-97, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079297

RESUMO

Rupture Event Scanning (REVS) was used to study oligonucleotide unwinding under mechanical load. Oligonucleotide melting temperature was successfully estimated using this method. To estimate the enthalpy of reaction, we represented denaturation process as a unimolecular reaction. This gave us the possibility to recover the force profile from the experimental data obtained in force measurements at different scanning time (reaction time) for different temperatures.


Assuntos
Conformação de Ácido Nucleico/efeitos da radiação , Desnaturação de Ácido Nucleico/efeitos da radiação , Oligonucleotídeos/metabolismo , Temperatura de Transição , Pareamento de Bases
8.
Nanoscale Res Lett ; 12(1): 404, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28610397

RESUMO

Fundamental understanding of tribochemical wear mechanism of oxide-free single crystalline silicon (without native oxide layer) is essential to optimize the process of ultra-precision surface manufacturing. Here, we report sliding speed-dependent nanowear of oxide-free silicon against SiO2 microspheres in air and in deionized water. When contact pressure is too low to induce Si yield, tribochemical wear occurs with the existence of water molecules and wear volume decreases logarithmically to constant as sliding speed increased. TEM and Raman observations indicate that the dynamics of rupture and reformation of interfacial bonding bridges result in the variation of tribochemical wear of the oxide-free Si with the increase of sliding speed.

9.
Int J Nanomedicine ; 7: 381-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22334772

RESUMO

Bond-rupture scanning for biomedical diagnostics is examined using quartz crystal microbalance (QCM) experiments and microparticle mechanics modeling calculations. Specific and nonspecific interactions between a microparticle and its binding QCM surface can be distinguished by gradually increasing the amplitude of driving voltage applied to QCM and monitoring its frequency changes. This research proposes a mechanical model of interactions between biological molecules and a QCM substrate surface. The mechanical force required to break a biotin-streptavidin bond was calculated through a one-pivot-point bottom-up vibration model. The bond-rupture force increases with an increase of the microparticle radius, the QCM resonant frequency, and the amplitude of driving voltage applied to the QCM. The significance of the research on biological molecular bond rupture is extremely important in characterizing microbial (such as cells and virus) specificity, due to the force magnitude needed to break bonds using a transducer.


Assuntos
Fenômenos Químicos , Modelos Químicos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Microbalança de Cristal de Quartzo/métodos , Sítios de Ligação , Biotina/química , Estrutura Molecular , Ligação Proteica , Estreptavidina/química , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa